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Abstract—We present a description of a virtual machine
and bytecode that have been designed around the goal
of optimized execution on highly variable, heterogeneous
hardware, instead of having goals such as small bytecodes as
was the objective of the Java Virtual Machine. The approach
used here is to combine elements of the Dalvik virtual machine
with concepts from the OpenCL heterogeneous computing
platform, along with an annotation system so that the results
of complex compile time analysis can be available to the
Just-In-Time compiler. We provide a flexible annotation
format so that the set of annotations can be expanded
as the field of heterogeneous computing continues to grow.
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I. INTRODUCTION

Computing hardware is in the middle of a dramatic shift
from the single-core, generally homogeneous model that
dominated prior to roughly 2005 to a many-core, generally
heterogeneous future. This shift began as a simple move from
single-core to multi-core processors. More recently, many-core
processors in the form of Graphics Processing Units (GPU)
from NVIDIA R© and AMD R©, as well as Many Integrated
Core (MIC) Architectures from Intel R© have moved more into
the mainstream. This move is probably best illustrated by the
line of Fusion R© chips from AMD that include GPU circuitry
on the same piece of silicon as the CPU. The ubiquitous nature
of this development is illustrated by the fact that the first
Fusion chips to be released were intended for laptops, not
workstations or servers.

In many ways, hardware has gotten ahead of software.
Most developers are still used to working in a single-threaded,
homogeneous environment. Not only do we have the legacy
of developers being trained for that world, but also most of
the languages and tools that are in use were designed for that
environment. Tools and languages are improving, but this type
of development is harder and more costly than single-threaded
development.

If development is not yet prepared for multi-core environ-
ments, it is certainly far from ready to tackle the challenges of
many-core, heterogeneous environments. There are standards
for doing this type of programming such as OpenCL R© and
CUDA R©. However, these standards force the programmer
to interact with the machine at a low-level, which tends to

increase development cost and require more effort from the
programmers. To make these systems more accessible, we
need higher level tools that allow the developer to spend
his/her time focusing on the logic of the application instead
of the details of the platform on which it will be running.
This is likely to become increasingly important as the options
for platforms grow. If making a portable program requires
separate development for the different options from Intel
(CPU, CPU/GPU, MIC), AMD (CPU, Fusion, GPU), NVIDIA
(GPU, Tegra), and the host of other combinations that are
likely to appear in the near future, then producing optimized
code that can cover the various options will be prohibitively
expensive.

The productivity of developers on single-threaded environ-
ments was greatly assisted by the development of platforms
that support higher level programming in a manner that is gen-
erally machine independent. For example, the Java R© Virtual
Machine (JVM) environment allows programmers to compile
to bytecode which is then optimized by a Just-In-Time (JIT)
compiler. Unfortunately, these environments were made with
design goals that did not include optimizability or support for
many-core, heterogeneous environments. Indeed, in the case
of the JVM, the design goals were small bytecodes and fast
emulation. As a result, it uses a stack based architecture which
causes some problems for producing optimal performance
even on single-threaded hardware [1], [2].

With all of these things in mind, we have set out to develop
a bytecode that has a primary design goal of being able
to support optimization for performance on heterogeneous
platforms. Our approach is to borrow ideas from one of the
newest register based virtual machine platforms, Dalvik R©,
and combine those with aspects of the OpenCL standard for
heterogeneous computing.

II. RELATED WORK

Arguably the biggest goal of heterogeneous computing
is increasing code efficiency. Almost all modern compilers
perform optimizations to increase code performance, but these
optimizations sometimes slow down the compiler. Dynamic
compilation and optimization that occurs in a virtual machine
(VM) must execute quickly, otherwise the time spent optimiz-
ing might negate the speed-ups provided by the optimizations.
In order to aid the VM’s optimization efforts, Krintz and



Calder developed an annotation framework for the JVM to
reduce compilation overhead so that complex optimizations
can more efficiently be performed in the VM [3]. Vallée-
Rai et al. found that because JVM class files can often be
optimized statically, adding annotations to these files may
reduce the number of optimizations that the JIT compiler
must perform, thereby allowing the compiler to focus on more
expensive optimizations. Furthermore, some runtime checks,
such as certain array index bounds checks, can be performed at
compile time. If these checks are performed at compile time,
annotations can be used to forgo the checks at runtime [4].

The idea of providing more high-level concurrency support
in VMs is not a novel concept. Marr et al., recognizing the
transition to many-core processors, argued that VMs need
to abstract concurrency to take advantage of this shift. In
addition, Marr et al. surveyed 17 VMs to determine the
current support for concurrency models and found only limited
explicit concurrency support [5]. While some current VMs
support models of concurrency on multi-core processors, few
provide abstractions for running code on GPUs. Peercy et al.
developed a VM for GPUs focused on performance. The Data
Parallel Virtual Machine (DPVM) that they developed provides
a simplified method to write code for GPUs yet still reveals
low-level functionality for when it is needed [6].

Another example of a VM that utilizes the GPU is GViM, “a
system designed for virtualizing and managing the resources
of a general purpose system accelerated by graphcis proces-
sors.” Although GViM incurs a performance cost over non-
virtualized solutions, the flexibility and reduction in program-
mer effort resulting from this VM model helps to justify the
virtualization of hardware other than simple CPUs [7]. Indeed,
virtualized execution will likely always perform worse than
code written and compiled for specific devices. If a program-
mer knows the intricacies of the hardware for which he/she is
writing code, then he/she can write extremely efficient code.
However, we suspect that very few programmers know these
minute details, and likely even fewer are willing to spend the
time and effort to write fine-tuned code for perfectly efficient
execution. Doing so would substantially increase development
costs, and for most applications, the effort is not worth the
result. Moreover, even when the most efficient code is written,
this code is not portable to other devices. By compiling source
code to a bytecode and allowing a VM to optimize the code
at runtime, we simultaneously get portability and efficiency,
while allowing programmers to write in high-level languages
without concern for low-level concepts.

While the examples provided above allow easier access to
the GPU, they do not utilize code execution on both the CPU
and the GPU. The MapCG framework provides a means to
write code for both the GPU and the CPU using a high-level
programming model. This framework allows programmers to
write code in the high-level MapReduce framework [8]. The
MapCG runtime then compiles the source code for execution
on the CPU and the GPU [9]. Along with providing access to
both the CPU and the GPU in a high-level environment, this
framework also allows for code portability to other CPU and

GPU architectures.
New technology is constantly evolving, and predicting the

next big advancement in hardware development is challenging
at best. Therefore, we need systems that can adapt to new tech-
nology, while maintaining backwards compatibility with older
code. Devices such as field-programmable gate arrays (FPGA)
provide a promising avenue for advancement in hardware
efficiency [10], and we would like to have old code utilize this
hardware as effectively as possible without requiring rewrites
or recompiles from source. In a world where computers are
becoming more heterogeneous, we need a way to provide
programmers with a programming model that is independent
of the hardware. The key to this model is virtualization [11].
Because technology is ever-changing, we present a flexible
model for storing optimization information that can be easily
adapted as new technology and techniques arise.

III. DALVIK

The Dalvik Virtual Machine is an integral part of Google’s
Android R© operating system. Code for the Dalvik VM is
typically written in Java, but the Dalvik bytecode differs
significantly from the Java bytecode. First and foremost, the
Dalvik VM is register-based, rather than stack-based like the
JVM [1], [12]. A register-based VM and bytecode offer a few
advantages over stack-based architectures. Because modern
CPUs are register-based, this type of bytecode more closely
mimics the hardware on which it is running. Therefore, if the
number of registers implemented in the VM matches the num-
ber of registers in the actual hardware, then register allocation
can be performed during the original compilation rather than
in the JIT. Furthermore, Shi et al. found that a register-based
VM is faster than a stack-based VM when implemented as an
interpreter [2]. Because many JIT compilers, such as Oracle’s
Hotspot VM, initially use an interpreter to decrease start-up
time [13], Shi’s findings suggest that a register-based bytecode
will improve performance in modern VMs.

A register-based bytecode also has some disadvantages.
Because it does not make any assumptions about the number of
registers, a stack-based bytecode is simpler and possibly better
suited for JIT compilation [2]. To mitigate these disadvantages,
the bytecode presented in this paper is neither register- nor
stack-based. Instead, it is more high-level in that it preserves
the concept of variables. The bytecode is based on the Dalvik
bytecode, but instead of referencing registers, our bytecode
references variables. Type information is also preserved for
these variables. Use of type information in low level languages
has been explored in other contexts before [14], [15].

IV. OPENCL

The OpenCL standard provides a way to utilize any piece of
hardware in the computer, as long as the appropriate drivers are
installed. A program written in OpenCL can query the machine
to determine which devices are available and then select the
device or devices best suited for running each section of code.
Because this functionality is in line with our goal of exploiting



a heterogeneous environment, we chose to implement the
virtual machine for this bytecode using OpenCL.

While the bytecode does not contain any instructions specif-
ically for the OpenCL implementation, the OpenCL compu-
tation model influenced some of the information preserved in
the bytecode from the original source code. This additional
information is stored in annotations, and provides optimization
hints to the JIT compiler. An OpenCL program consists of two
distinct sections: the host and the kernels. The host serves
only to set up kernels and queue them for execution, while
the kernels are where the real computation happens. Part of
the host set up includes querying for and deciding which
devices the program will use [16]. This execution model works
well with annotations that specify on what type of device a
particular block of code will execute most efficiently (e.g.,
executing a data parallelizable block on a GPU).

Another annotation that OpenCL helped to motivate is an
annotation that states the variables used in a certain section of
code. Because the OpenCL memory model requires that data
be copied to each device where it is needed, this annotation
allows the VM to optimize memory moves to different devices.
Moreover, because memory move operations are computa-
tionally expensive, annotations such as whether an object is
immutable or functionally immutable will tell the VM whether
certain memory moves are actually necessary.

V. BASIC ASSUMPTIONS

When developing this bytecode, we made several assump-
tions about its future uses. Unlike the Java and Dalvik byte-
codes, we did not prioritize making the bytecode small. As the
cost of memory continues to decrease, the size of compiled
bytecode will become less significant. As such, and because
a larger bytecode can preserve more information important
for optimizations, we decided to focus on providing each
instruction with relevant information rather than worry about
bytecode size.

In addition, we decided that most of the annotations should
be designed so that they can be ignored when executing the
code. Thus, the JIT compiler can initially disregard most anno-
tations in order to decrease start-up time, then later recompile
code sections using the annotations to improve performance.
Certain annotations, such as the annotation preserving type
information when type erasure would normally occur, may or
may not be ignored, depending on the original source language
(for example, a language assuming type erasure, such as Java,
can ignore these annotations until optimization).

VI. BYTECODE DESIGN

A. Instructions

The bytecode contains two distinct types of information:
the instructions and the annotations. The instructions are the
actual operations that must be performed when executing the
code. Each instruction is 128 bits long. The first 16 bits denote
which instruction to perform, and the last 16 bits are reserved
for annotations associated with the instruction. The other bits
are used to store references to variables, type information,

or literal values, as determined by the individual instructions,
using 16 bits for each variable or type and groups of 16 bits
for literals. Figure 1 shows a pictoral representation of the
instruction format.

Instructions refer to variables by using a 16 bit integer. Each
stack frame contains a new set of variables. Each variable also
has a type associated with it, which is specified using a 16
bit reference when the variable is initialized. The first eight
types are reserved for the primitives that are built into most
modern hardware (boolean, char, byte, short, integer, long,
float, and double). The rest of the types are defined by user
and language/library defined types. The use of a 16 bit field to
represent a type has already been established in the JVM and
Dalvik; however, associating annotations with variables and
types has only been explored in a limited context [1], [12].

Along with type information for individual variables, the
types used in generics will also be preserved in the bytecode.
This information will be located in annotations to variables
that take a generic parameter. Thus, unlike the JVM, this
bytecode will not be limited by type erasure.

Like Dalvik’s dex files and the JVM class files, this bytecode
also has type files which contain methods and variables asso-
ciated with objects. The headers for these type files are similar
in form to the headers used in Dalvik and the JVM [1], [12].
However, the headers also contain annotation information that
pertains to the type as a whole. In addition, annotations will
accompany the fields and methods to provide specific details
for each. For example, an object may or may not be immutable
as a whole, so this information is stored in the header. In
mutable objects, methods that do not change the object can be
classified as non-mutating so that if only these methods are
used within a program, the object can be considered immutable
and take advantage of optimizations associated with immutable
objects.

When a function call instruction executes, a few key steps
occur. First, the stack frame shifts so that the function will
have a new set of variables. The first n variables contain the
arguments to the function, where n is the number of arguments
to that function and n ≤ 4. If a function requires more
than four variables, the first three are passed using variable
indexes, and the remaining variables are stored in memory
through instructions preceding the function call. The address
to this memory location is then stored in a variable and passed
to the function in the fourth argument slot. The function
is responsible for extracting the variables from memory as
needed, using bytecode instructions inserted by the compiler.

The instruction format is rather long, and many instructions
will not use the full 128 bits available. For some instructions,
the bytecode could be modified to contain variations that
perform multiple operations on different sets of data. This
idea echoes the sentiments of the Very Long Instruction Word
(VLIW) architectures [17]. For simplicity, we chose not to
include these types of instruction in the current bytecode
design.



instruction var1 var2 var3 var4 var5 var6 annotation

Fig. 1. The basic format of the instruction for our bytecode. Each box represents 16 bits. Some vars may be unused in certain instructions. The var slots
may also be replaced by types or literals, depending on the instruction. See the Sample Instructions section for examples of different instruction types.

B. Annotations

The annotations in this bytecode come in two forms. The
first form is a set of annotations that are expressed in individual
instructions, referenced by a 16 bit integer in the last 16 bits of
the instruction. The meaning of the annotation depends on the
instruction with which it is associated. For some instructions,
each combination of 16 bits will represent a unique annotation.
For others, however, the 16 bits will serve as bit flags so
that multiple pieces of information can be associated with a
single instruction. For example, knowing whether a variable is
constant, escapes the current thread, and/or escapes the current
stack frame provide important optimization information, so
the 16-bit annotation for the variable declaration instruction
is implemented as a set of bit flags. Thus, a variable can be
flagged with all three of these annotations, and more, within
the declaration instruction itself.

The other annotation form in this bytecode is the annotation
file. This file contains all of the annotations associated with
the code other than the annotations specified in the last field
of the instructions themselves. A special annotation instruction
is used to reference these annotations, and these instructions
are inserted by the compiler at the appropriate locations to
specify information for potential optimizations. The annotation
instruction uses the last 16 bits to describe the annotation type.
The 64 bits after the instruction field encode an offset in the
annotation file for the full annotation data. The location in
the annotation file must contain the length of the annotation
followed by the specific information for that annotation. The
format of the information is defined by the annotation type
that was in the bytecode instruction. Each type of annotation
can have an entirely different format. This flexible annotation
format allows for new annotations to be easily added in the
future. The creators of those annotations can decide how
best to arrange the information associated with them. If a
VM identifies an annotation that it is not aware of, it will
simply ignore the annotation. Thus, programs compiled with
new annotations are backwards compatible with older VMs,
but some potentially useful optimization information will go
unused.

VII. SAMPLE INSTRUCTIONS

Page limit restrictions prevent the entire set of bytecode
instructions from being reproduced in this paper. Instead, we
have included a few representative instructions to demonstrate
the general format. Empty boxes indicate unused fields. Unless
otherwise stated, all fields in the following figures are 16 bits.

The first group of instructions is shown in Figure 2 and deals
with variables and object creation. As with most instructions,
after the 16 bit op-code, the next 16 bit field stores a desti-
nation register. The third 16 bit field encodes a type, except
in the assignments, where the type will be known from the

initialization of the destination variable. The variable creation
instructions then provide an initial value, either from a source
variable or from a literal that can be up to 64 bits. A type
casting instruction also specifies a source variable for the cast
as the static types of the source might not be valid for the
cast.

The annotation segment in each instruction uses a full 16
bits to provide for future additions; program analysis is an
area of significant current work, and new languages might
have constructs that provide particularly useful information
for optimization. In some cases, there are clear and obvious
uses for some of the bits. For variable declaration, a bit is
reserved for telling if the variable is constant after declaration.
For object creation, two bits are reserved for the results of
escape analysis to see if the object can escape the current stack
frame or the current thread. This type of analysis can allow for
stack allocation of objects or the removal of synchronization
code [18].

In Figure 3 you can see the samples of numeric operations
for unary and binary operations. The binary operations come
in forms where both operands are variables as well as a form
where one operand is a literal.

Figure 4 shows the different array instructions. While arrays
can be modeled in languages as data types that sit at the
library level [19], the bytecode needs to have a way to set
aside and access larger chunks of continuous memory. The
virtual machine implementation is given freedom in how it
stores objects in an array.

The last group of instructions shown is in Figure 5 where
you can see the flow control instructions. These include re-
quired and conditional branches as well as method invocations.
The branch to a specific instruction will be the most commonly
used form, but branching to variable locations is also allowed
to provide greater flexibility (i.e., replacing the dest literal with
a variable that contains the address to which to jump).

VIII. FIRST-CUT ANNOTATIONS

The cornerstone of the proposed VM design is that compil-
ers can do costly and complex analysis to discover information
that is useful for optimization, but that the information will
only be useful if it is retained in some form in the bytecode so
that it is available to the JIT. Some of this information can be
placed in the instructions themselves, as noted in the previous
section. However, additional flexibility is provided through a
separate annotation file and instructions that can reference into
it. In this section, we consider some of these annotations.

At the class level, there are obvious advantages for an-
notations that tell if a given class is immutable or func-
tionally immutable. An immutable class is one for which
the values stored in instances can not change in any way
after instantiation. A functionally immutable class relaxes this



Instantiates variable destVar with the value from sourceVar
init-var destVar type sourceVar annotation

Instantiates variable destVar with the value of literal
init-var-lit destVar type literal (64 bits) annotation

Creates a new object of type type, storing a reference to it in destVar
obj-create destVar type annotation

Fig. 2. This is a list of the instructions related to variable and object creation and assignment.

Unary operators
neg destVar sourceVar annotation

Binary operators on two variables. The op includes add, mult, etc. The type is an appropriate primitive type.
op-type destVar sourceVar1 sourceVar2 annotation

Fig. 3. These are the basic math instructions that are part of the bytecode.

Creates a new array of size sizeVar and type type
new-array destVar type sizeVar annotation

Stores sourceVar2 in array destVar at position sourceVar1
array-put destVar sourceVar1 sourceVar2 annotation

Fig. 4. These are the instructions that are intended to work with arrays in the VM.

Jumps to the bytecode instruction at location dest
goto dest (64 bits) annotation

Branch to dest if sourceVar1 and sourceVar2 compare as specified (e.g., eq, ne, lt, le, gt, ge)
if-test sourceVar1 sourceVar2 dest (64 bits) annotation

Invokes method number methodNo on object objVar
invoke objVar methodNo argVar1 argVar2 argVar3 argVar4 annotation

Fig. 5. These are the instructions that support flow control.

restriction so that any changes are not visible to outside code
by changing the results of method invocations. An instance
of a functionally immutable class might have a mutable field
that is not directly accessible from the outside and which is
used only for optimization. Instances of such a class are not
as thread safe as a truly immutable class, but they can be
safely copied and distributed without needing to communicate
changes back to the original. This fact is particularly beneficial
in a heterogeneous environment where devices often have
separate memory spaces.

The class level annotations can also include the results of
analyses such as shape analysis [20]. This annotation can pro-
vide the VM with information that is significant for memory
allocation or the use of preloading instructions to prevent
pipeline stalls. The memory allocation aspect is particularly
useful in heterogeneous systems because many devices do not
support dynamic memory allocation or have cached memory
hierarchies that are standard in CPUs.

Another use of annotations is the specification of full types

for generics/parametric types. This information has to be
stored in annotations because the types can be arbitrarily
long. The optimization benefits of having access to full types
is well known from their use in C++ in techniques such
as expression templates [21]. Putting the basic types that
result from type erasure into the primary bytecode allows
the JIT to get running quickly using the limited space in
standard instructions. The complete types will be available in
annotations for optimizations or for languages that allow run
time matching on those types.

The true power of allowing arbitrary annotations in a
separate file is realized when we look at the impact on
heterogeneous computing. This is an area that is still in rapid
development and will inevitably experience significant change
in the coming years. Annotations aimed at heterogeneous
computing specify when blocks of code are particularly well
suited for being run as kernels or when they would work
particularly well on certain types of devices.

One of the other major benefits of JITs is that they can take



runtime information into account. This feature is particularly
significant in parallel and heterogeneous processing. Deciding
whether a particular process should be split across threads
or run as a kernel on a particular device can often only
occur at runtime when the value of some size parameter is
known. Compilers can add annotations estimating how large a
parameter needs to be in order for these approaches to be
beneficial, but the decision for whether any particular call
should be handled in one way or another requires knowing
the run time values.

IX. CONCLUSIONS

In this paper, we have presented a bytecode and virtual
machine design that prioritizes optimization in a heteroge-
neous environment. By storing annotations with the bytecode,
the JIT compiler can make runtime optimization decisions,
taking into account the devices available in the computer.
This design provides code portability to different architectures
and different combinations of devices, and because many
optimization decisions are made at runtime, the application
can adapt to the hardware and provide optimizations specific
for each platform.

The field of heterogeneous computing is in a state of
constant, rapid evolution. In order to incorporate new ad-
vances in this field, the annotation format for this bytecode
is extremely flexible and designed for annotations to be
added over time. New annotations can be formatted in a
way that best organizes the information within, and because
most annotations only provide optimization information, code
compiled with new annotations is backwards compatible with
older VMs. Preserving backwards compatibility is important
for many applications, but this requirement should not limit
future advances in optimizability.

In the future, we plan to implement the VM for this
bytecode to execute code on both a CPU and a GPU. We will
initially write an interpreter in OpenCL, with the intention of
later using it with a JIT compiler. In addition, we will write a
compiler to the bytecode for a simple high-level language in
order to explore program analysis techniques and annotation
generation. We also plan to design more annotations to add to
the bytecode to improve optimization potential.
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