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ABSTRACT

The effectiveness and efficiency of content-based image retrieval (CBIR) can be improved by determining an
optimal combination of image features to use in determining similarity between images. This combination of
features can be optimized using a genetic algorithm (GA). Although several studies have used genetic algorithms
to refine image features and similarity measures in CBIR, the present study is the first to apply these techniques
to medical image retrieval. By implementing a GA to test different combinations of image features for pulmonary
nodules in CT scans, the set of image features was reduced to 29 features from a total of 63 extracted features.
The performance of the CBIR system was assessed by calculating the average precision across all query nodules.
The precision values obtained using the GA-reduced set of features were significantly higher than those found
using all 63 image features. Using radiologist-annotated malignancy ratings as ground truth resulted in an
average precision of 85.95% after 3 images retrieved per query nodule when using the feature set identified
by the GA. Using computer-predicted malignancy ratings as ground truth resulted in an average precision of
86.91% after 3 images retrieved. The results suggest that in the absence of radiologist semantic ratings, using
computer-predicted malignancy as ground truth is a valid substitute given the closeness of the two precision
values.
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1. INTRODUCTION

Lung cancer accounts for the highest number of cancer deaths in the United States each year, constituting 28%
and 26% of all cancer deaths in 2011 for males and females, respectively.1 Computed tomography (CT) scans
can assist radiologists in early detection of lung nodules, which increases the likelihood of a patient’s survival.2

In order to improve lung nodule detection, computer-aided diagnosis (CAD) is effective as a second opinion
for radiologists in clinical settings.3 In CAD systems, content-based image retrieval (CBIR) can be used to
find images of diagnosed lung nodules similar to an undiagnosed nodule of interest.4 With the aid of similar
images, radiologists’ diagnoses of lung nodules in CT scans can be significantly improved.5 In CBIR, image
features are extracted and stored in feature vectors, and a similarity measure is used to calculate the similarity
between images based on these features.6 However, a semantic gap still exists in which the human perception of
similarity between images may not correspond to the content-based similarity.7 Our goal is to bridge this gap by
integrating radiologists’ semantic characteristic-based ratings of lung nodules with content-based image features
in retrieving similar images from the National Institute of Health (NIH) Lung Image Database Consortium
(LIDC). To accomplish this, we use a genetic algorithm (GA) to determine the optimum combination of image
features that will retrieve images that are most similar, using diagnosis as a ground truth.
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2. RELATED WORKS

Extensive work has been done exploring medical applications of CBIR in recent years, particularly with respect
to CAD.4 Using the LIDC for images of thoracic CT scans, Lam et al.8 developed an image retrieval system
known as BRISC and computed texture features using three methods: Haralick Co-occurrence matrices, Gabor
filters, and Markov Random Fields. They determined that Gabor and Markov feature extraction techniques gave
the best results, using precision, the ratio of relevant images retrieved to total images retrieved, for evaluation.
Additionally, they found that precision increased with the number of radiologists who agreed on the rating of
a lung nodule, as was confirmed by Datteri et al.9 To determine which of the retrieved images were relevant
matches, Datteri et al.10 used an objective evaluation, for which images belonging to the same nodule but in a
different slice or outlined by a different radiologist were considered relevant, and a subjective evaluation, in which
a relevant image is one that appears in a list of most similar images based on radiologists’ semantic annotations.
In exploring the relationship between content-based similarity and semantic-based similarity, Jabon et al.11 found
a correlation between the content-based image features for LIDC lung nodules and radiologists’ semantic ratings
of these nodules, with a combination of 64 image features yielding the highest number of matches. Furthermore,
Dasovich et al.12 developed a linear regression similarity model used for a 116 nodule subset of LIDC images
using content features as input and semantic characteristics as output. Their model yielded an R2 value of
0.871, indicating a high correlation between content-based and semantic-based features for this subset. Machine
learning approaches, particularly artificial neural networks (ANN), have also been applied to lung CT scans
to evaluate the relationship between semantic and content-based similarity.5,13 Kim et al.13 expanded upon
the linear regression prediction model using an ANN model to predict semantic similarity from content-based
similarity, with a combination of 64 image features. For random nodule pairs, this ANN model resulted in the
highest correlation of 0.129, suggesting that for the combination of image features used, the semantic gap still
exists.

CBIR has been used in numerous medical applications beyond the scope of lung CT scans, varying in both
organ of interest and imaging modality. Continuing with ANN techniques for CBIR, Muramatsu et al.14 analyzed
mammogram images from the Digital Database for Screening Mammography, with five radiologists providing
subjective semantic ratings for the masses. The ANN prediction model resulted in a correlation of 0.798 between
content-based and semantic-based similarity, where the radiologists’ semantic ratings were used as ground truth.
Napel et al.15 used CBIR with liver CT scans, and content-based and semantic-based features were weighted
using a method of machine learning known as adaptive boosting (AdaBoost). Two radiologists evaluated each pair
of images and rated similarity on a scale of 1 to 3, and images with an average rated similarity of 2.5 or greater
were considered similar. Based on this approach, they determined that combining all 209 features resulted
in the highest precision, with an average precision above 90%. Syeda-Mahmood et al.16 integrated multiple
modalities, including ultrasounds, ECG, audio data, diagnosis data, and demographic data, in developing the
AALIM system for cardiac decision support, with the goal of retrieving similar patient records. In combining
the various modalities, they used weighted linear combinations of similarity values.

Another method of determining the best combination of similarity measures is the use of a genetic algorithm
(GA) or genetic programming (GP). Both GA and GP are problem-solving artificial intelligence approaches that
apply the biological principles of evolution to a population of individuals, or solutions.17 Genetic transformations
including reproduction, cross-over, and mutation are applied to these individuals in order to improve performance
in subsequent generations, and fitness functions are applied to determine the most successful individuals. While
GA linearly combines features, GP can employ non-linear representations of individuals, such as trees. In
applying GP and GA to CBIR, Torres et al.18 tested combinations of seven fitness functions with five categories
of image features and two similarity measures on the fish shape and MPEG-7 databases to find the combination
that would result in the highest precision for similar image retrieval. They determined that the combination
of similarity measures found using GP and GA resulted in higher precision after 10 images than the baseline,
which did not combine similarity measures. Although results for GA and GP implementations of CBIR for non-
medical images are promising,17–21 GA approaches for medical images and CBIR have not been investigated. In
the present study, we have incorporated medical data into GA-based CBIR in determining the combination of
image features that would yield the highest precision for similar image retrieval.



3. METHODS

The LIDC database used in this study was released in 2009 and contains 399 CT scans of the lungs. Up to
four radiologists analyzed each scan by identifying nodules and rating the malignancy likelihood of each nodule
on a scale of 1 to 5 (”Highly Unlikely”, ”Moderately Unlikely”, ”Indeterminate”, ”Moderately Suspicious”, or
”Highly Suspicious”, respectively).22 To reduce the variability among radiologists, the mode of the radiologists’
ratings was used; when a unique mode did not exist, the median rounded down to the nearest whole number was
used.11 Nodules with malignancy ratings of 1 or 2 were considered benign, 4 or 5 were considered malignant, and
3 were considered unknown. From these scans, 932 unique nodules were identified, with most nodules appearing
on more than one slice. Previous work reduced the number of slices so that each nodule is represented by only
one instance - using the boundaries drawn by the radiologists, the slice containing the largest area for a given
nodule was used to represent that nodule.13 Then 63 image features were extracted based on texture (using
Gabor filters, Markov Random Fields, and Haralick Co-occurrence matrices), size, shape, and intensity; these
features were normalized across all of the nodules using the Z-Score method.23 The number of nodules was
further reduced to 914 by removing nodules smaller than 5 by 5 pixels because information extracted from these
smaller nodules is noisy.

The computer-predicted distribution of semantic characteristics for each nodule was obtained using a CAD
algorithm described in previous work,24 where the DECORATE algorithm was used to construct an ensemble
of classifiers based on the 63 image features extracted for each nodule. The 914 dataset was further reduced by
eliminating nodules with a malignancy rating of 3. When using computer-predicted malignancy as ground truth,
this resulted in a total of 387 nodules, and with radiologist-predicted malignancy, 536 nodules. All nodules have
an actual diagnosis, whether or not the radiologists were able to predict it. Thus, trying to match nodules rated
as unknown with other nodules with the same rating would be inconsistent because some of these nodules are
actually malignant while others are actually benign.

For a given nodule, the 63 image features were placed into a feature vector. The Euclidean distance between
the feature vectors for a pair of nodules was used to represent their similarity. To evaluate the effectiveness of the
image retrieval system, precision was calculated. The baseline precision measurements were obtained by finding
the average precision (PAVG) after 3, 5, 10, 20, and 50 images retrieved using all image features in the feature
vector. In applying the GA to the image retrieval process, four different configurations were used for calculating
precision and assessing the fitness of individuals in the GA population, varying in whether or not nodules with
unknown malignancy were used and whether precision was calculated with computer-predicted malignancy or
radiologist-predicted malignancy as ground truth (Table 1).

Table 1. Configurations used to test the CBIR system.

Configuration
Include Unknown

Malignancy Nodulesb
Exclude Unknown

Malignancy Nodulesb

Radiologist-Predicted Malignancya 1 2

Computer-Predicted Malignancya 3 4
a Indicates whether the radiologist-predicted or computer-predicted malignancy was used as

ground truth.
b Indicates whether the nodules that were rated ’unknown’ with respect to malignancy were used

in the dataset.

The GA was written using a framework called Jiva-ng (http://code.google.com/p/jiva-ng). The mutation rate
(rate at which any given trait value is randomly altered between generations) was set to 0.1, and the crossover
rate (the rate at which two individuals in the current generation are combined to form a new individual in
the next generation) to 0.9. These values were chosen because a high mutation rate could result in the loss of
good solutions between generations, while a high crossover rate is more likely to produce better solutions by
combining good individuals from the previous generation. A population of 500 was used with 50 generations in
order to achieve reasonable computation times but still produce good solutions. Individuals were represented
as a Boolean list of 63 values, one for each image feature. For a Boolean value at position i in the list, a



value of ’true’ indicated using the image feature at i when calculating the similarity between pairs of nodules,
while a ’false’ indicated not using that image feature. Average precision after 3 (PAVG@3), 5 (PAVG@5), and
10 (PAVG@10) images retrieved were tested as fitness functions. In a GA, the fitness function is used to decide
which individuals are the best solutions within each generation. The best solutions are then copied directly to
the next generation to preserve them, mutated into slightly different individuals, and combined with each other
to produce new solutions in an attempt to find better solutions in the following generations. Running the GA on
each of the four configurations resulted in four distinct combinations of image features for each fitness function.
To evaluate the effectiveness of each of these combinations, precision after 3, 5, 10, 20, and 50 images retrieved
was calculated using the configuration that generated that combination.

4. RESULTS

The baseline precision after 3, 5, 10, 20, and 50 images for each configuration is listed in Table 2. The highest
precision was 84.24% and was obtained when the computer-predicted malignancy was used and nodules with
unknown malignancy ratings were removed. When the radiologist-predicted malignancy was used, a similar
precision (82.77%) was obtained, indicating that there is a relationship between image features and semantic
characteristics.

Table 2. Baseline precision results for the CBIR system.

Configuration PAVG@3a PAVG@5a PAVG@10a PAVG@20a PAVG@50a

1 51.57% 51.23% 49.78% 50.26% 48.58%

2 82.77% 82.57% 81.94% 80.90% 79.23%

3 65.43% 65.43% 64.15% 62.78% 59.84%

4 84.24% 83.20% 82.76% 82.07% 79.75%
a Average precision after 3, 5, 10, 20, or 50 images retrieved using all 63 image

features.

After applying the GA, the best precision (86.91%) was obtained using configuration 4 with the computer-
predicted malignancy ratings and removal of the unknown malignancies (Table 3). Configuration 2 with the
radiologist-predicted malignancy as ground truth resulted in a precision of 85.95%, only slightly worse than
configuration 4. These results were obtained using PAVG@3 as the fitness function.

Table 3. GA precision results for the CBIR system with PAVG@3 as the fitness function.

Configuration PAVG@3a PAVG@5a PAVG@10a PAVG@20a PAVG@50a

1 55.76% 53.70% 52.11% 50.69% 49.12%

2 85.95% 84.10% 83.53% 81.95% 80.37%

3 71.30% 69.74% 67.28% 65.45% 62.39%

4 86.91% 85.32% 84.13% 82.58% 80.90%
a Average precision after 3, 5, 10, 20, or 50 images retrieved using a reduced set of

image features.

The GA selected 29 image features for both configurations 2 and 4 (Table 4). Of these features, 14 are
common to both sets. Within each set, all four categories of image features (texture, size, shape, and intensity)
are represented. Furthermore, the 14 common features also include all four of these categories, indicating that
texture, size, shape, and intensity are all important for CBIR of lung nodules. Using a pair-wise one-tail t-test
with p<0.05, we determined that the precisions obtained using the GA showed a significant improvement over
the baseline in all cases except after 20 images retrieved with configurations 1 and 4. We also calculated recall
for each configuration after 3, 5, 10, 20, and 50 images retrieved (Tables 5 and 6), and a pair-wise one-tail t-test
with p<0.05 confirmed that the recall improvement with GA-reduced features is statistically significant, except
for 20 and 50 images retrieved with configuration 1.



Table 4. GA-selected image features using configurations 2 and 4 with PAVG@3 as the fitness function.

Configuration 2c Configuration 4c

Correlation Area Cluster Tendency Markov 2b

Entropy Circularity Energy Markov 4b

Homogeneity Perimeter Sum Average Area
Inverse Variance EquivDiameter 3rd Order Moment ConvexArea
Max Probability MajorAxisLength Variance Circularity
Sum Average Minor Axis Length Gabor Mean 0 05a Perimeter
Gabor Mean 0 04a MinIntensity Gabor SD 45 04a ConvexPerimeter
Gabor Mean 45 04a MaxIntensity Gabor SD 45 05a Roughness
Gabor SD 45 04a MeanIntensity Gabor Mean 90 04a EquivDiameter
Gabor SD 90 05a SDIntensity Gabor SD 90 05a MajorAxisLength
Gabor SD 135 04a MinIntensityBG Gabor SD 135 03a Compactness
Gabor Mean 135 05a MaxIntensityBG Gabor Mean 135 04a MaxIntensity
Gabor SD 135 05a SDIntensityBG Gabor SD 135 04a MaxIntensityBG
Markov 1b Intensity Difference Gabor SD 135 05a SDIntensityBG
Markov 3b Markov 1b

a For Gabor filter features, the first number represents orientation (0◦, 45◦, 90◦, and 135◦) and the
second is frequency (0.3, 0.4, 0.5).23 SD is standard deviation.

b For Markov Random Field features, the numbers correspond to orientation (0◦, 45◦, 90◦, and
135◦, respectively) or variance, for a total of 5 features.23

c Bold values are common to both configurations.

Table 5. Baseline recall results for the CBIR system.

Configuration RAVG@3a RAVG@5a RAVG@10a RAVG@20a RAVG@50a

1 0.49% 0.82% 1.60% 3.21% 7.69%

2 0.87% 1.45% 2.86% 5.59% 13.48%

3 0.59% 0.98% 1.90% 3.71% 8.70%

4 1.25% 2.07% 4.08% 8.07% 19.39%
a Average recall after 3, 5, 10, 20, or 50 images retrieved using all 63 image features.

Table 6. GA recall results for the CBIR system with PAVG@3 as the fitness function.

Configuration RAVG@3a RAVG@5a RAVG@10a RAVG@20a RAVG@50a

1 0.53% 0.85% 1.66% 3.21% 7.72%

2 0.92% 1.48% 2.93% 5.67% 13.74%

3 0.65% 1.06% 2.03% 3.91% 9.22%

4 1.30% 2.12% 4.19% 8.20% 19.84%
a Average recall after 3, 5, 10, 20, or 50 images retrieved using a reduced set of image

features.

5. CONCLUSION

One of the main goals of CBIR is to bridge the semantic gap between the human perception and the computer
perception of similarity. We addressed this issue by implementing a genetic algorithm to find a combination of
image features for a CBIR system to retrieve lung nodules that radiologists would consider similar with respect
to malignancy. The reduced sets of image features determined by the GA increased the precision for this CBIR
system. The best precision value was 86.91% and was obtained using computer-predicted malignancy ratings
and removing nodules with unknown malignancy ratings (configuration 4), whereas the baseline precision for
this configuration was 84.24%. Furthermore, because texture feature extraction methods are computationally
intensive, reducing the number of features will decrease computation time when newly obtained images need to



be processed. In addition, calculating the similarity between two images will also be faster with fewer features.
In the absence of radiologists’ semantic ratings, using computer-predicted malignancy as ground truth is a valid
substitute since the precision values are very close (computer-predicted: 86.91% versus radiologist-predicted:
85.95%). In future studies, we will attempt to classify the nodules with unknown malignancy ratings using this
CBIR system to retrieve nodules with known malignancy ratings. Successfully classifying these unknown nodules
would further validate the effectiveness of our CBIR system and the two sets of image features identified by the
GA.
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