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This talk is based on a talk that I presented at SIGGRAPH Asia 2019, hence the 
branding.  It was originally a ~20-minute talk for experts in the field of computer 
graphics, so I have expanded it to include additional background information for a 
wider experienced audience.

If I think back to when I was a student at Trinity, if I had heard this title “Staged 
Metaprogramming for Shader System Development,” I think my reaction would be…
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You might be thinking:
“I know some of those words.”

(That would have been my reaction when I was a student at Trinity.)

“I know some of those words.”

So let’s start by breaking down the title to see what this talk will be about.
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Staged Metaprogramming for
Shader System Development

Programming

Languages

Computer Graphics

This talk is partly a talk on programming languages.  I’ll discuss what “staged 
metaprogramming” is, and also cover what I mean by “metaprogramming” more 
generally.

But this talk is primary about computer graphics, and that’s where this thing called a 
“shader system” come in.  We’ll cover what that is a little later, but first, I want to dive 
into the field of computer graphics in the context of this talk.  It’s a very wide field, so 
I’m going to focus on the aspects at which this work is aimed, but keep in mind that it 
could be useful in other areas as well.
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What do I mean by “computer graphics?”

Broadly, it means: “Generating images with the aid of computers”

But specifically, I mean: “Using artist-authored content to generate 
images for animated movies, visual effects (VFX), video games, etc.”
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Shape Movement Appearance Illumination

Broadly, “computer graphics” means “generating images with the aid of computers.”  
This is extremely broad, and includes things like computational photography, image 
processing, computer vision, and many other things.

But in the context of this talk, what I mean by “computer graphics” is “using artist-
authored content to generate images for things like animated movies, visual effects, 
and video games.”

By “artist-authored content,” I mean things like the 3D geometric models of objects 
(e.g., characters, buildings, furniture), movement or animations of those 3D models, 
the appearance of objects (Are they made of wood? Plastic? Metal? Are they 
reflective? Translucent?  Is it skin? Or hair?  Basically, what material is an object made 
of?), and finally illumination (What are the lights in a scene?  How bright are they?  
Where are they located?).

All of this content is used together to generate the many images that make up a 
rendered scene.

I want to make one more distinction in our definition of computer graphics, and that’s 
to separate “real-time rendering” and “offline rendering.”
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E.g., movies and visual effects

∼3 hours per frame

(for example)

Real-Time Rendering vs. Offline Rendering

E.g., video games

∼16 ms per frame

(= 60 frames per second)

or faster!

(The focus of this talk)
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Real-time rendering refers to generating images (or frames) as quickly as possible in 
order to create a fluid interactive experience.  The primary example of real-time 
rendering is video games, where you want the images displayed on screen to update 
quickly, for example, as you move the character around in the environment.

So in real-time rendering, performance is critical.  Each new image must be generated 
in about 16 milliseconds (which corresponds to 60 frames per second).  Maybe you’re 
willing to go as high as ~33 milliseconds per frame (or 30 FPS), but any longer and the 
game wouldn’t feel very fluid.  Or maybe you want to generate frames even faster!  
This is especially important for virtual reality (VR) using head-mounted displayed.  
Because the screens are so close to your eyes, framerates of 90 FPS, 120 FPS, or even 
higher become more important.

This is in contrast to offline rendering, which is commonly used in movies and visual 
effects.  In those applications, you don’t need to instantly update the images 
displayed on screen, because users aren’t interacting with the scene.  Instead, artists 
create the scenes, and then ship off the rendering work to generate images to giant 
clusters of computers in a render farms, which might spend up to 3 hours (for 
example) rendering each frame of a movie.  They can afford so much time per frame, 
because they are only going to generate that frame once, which will then be viewed 
by many people each time the movie is watched.
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This work I’m talking about today focuses specifically on real-time rendering.  
However, the ideas and concepts can be useful in the offline rendering world too.

So now that we have our definition of computer graphics for this talk, how do we 
take artist-authored content and use it to generate images in real time?

***Extra context for interested readers:***

As an aside, between real-time and offline rendering is “interactive” rendering, where 
rendering a frame might take a few seconds or 1-10 FPS.  So not quick enough to be 
“real-time.”  This is useful, for example, for movie artists to get a feel for how a scene 
will look and make adjustments along the way without spending 3 hours for a final 
render.
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Content and Platform

Platform
(Hardware)

Shape Movement
Appearance Illumination

GPU

VS HS DS GS PS Compute

CPU

Threads SIMD

From “A Modern Programming Language for Real-Time Graphics: What is Needed?”

by Tim Foley (NVIDIA Research), Open Problems in Real-Time Rendering, SIGGRAPH 2016

Content

(I’m borrowing these next few slides from a talk that my coauthor Tim Foley gave at 
SIGGRAPH a few years ago.  Thanks Tim!)

That content must be mapped from the artist-authored concepts to the hardware 
platform that’s going to produce the images.

In real-time rendering, typically the hardware platform we’re talking about is CPU 
cores along with specialized GPU (or Graphics Processing Unit) hardware.

In order to get the stuff an artists produces up on the screen, we need to have a plan 
for how to map the concepts in the top row to the hardware platform on the bottom.
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Specify mapping per-asset, per-platform?

Content

Shape Movement
Appearance Illumination

GPU

VS HS DS GS PS Compute

CPU

Threads SIMD
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From “A Modern Programming Language for Real-Time Graphics: What is Needed?”

by Tim Foley (NVIDIA Research), Open Problems in Real-Time Rendering, SIGGRAPH 2016

Platform
(Hardware)

One (bad) way we could do that is by writing code on a per-asset, per-platform basis.

This obviously wouldn’t scale, and so it isn’t what we actually do.
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Map using application-specified interface

Content

Shape Movement
Appearance Illumination

GPU

VS HS DS GS PS Compute

CPU

Threads SIMD

Interface Mesh Rig Animation Pattern BRDF Light
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From “A Modern Programming Language for Real-Time Graphics: What is Needed?”

by Tim Foley (NVIDIA Research), Open Problems in Real-Time Rendering, SIGGRAPH 2016

Platform
(Hardware)

What I claim we actually do in practice is this:

A graphics programmer defines an *interface* - a set of concepts that are specific to 
a particular engine or production.
*This* is how we will express an animation rig.
*This* is how we will represent materials (using reflectance functions).

Some of the representations in that interface might be pure data (e.g., for a mesh), 
and others might include code (e.g., if artists describe pattern generation as a 
“noodle graph”).

Either way, the task is to:
- map the assets produced by artists so that they conform to the chosen concepts in 

the interface, and
- map those concepts efficiently to one or more target platforms

This thing I’ve referred to as a “shader system” helps to facilitate this process, helping 
graphics programmers define interfaces that enable artists to create the content for a 
game.

But before we get into what a “shader system” is, let’s look at how we use a GPU to 
take this artist-authored content and generate an image from it using “shaders.”
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OpenGL / Direct3D Rasterization Pipeline 
(simplified)

9

OpenGL / Direct3D (part of DirectX) – APIs for 3D graphics
• They enable programmers utilize the GPU to achieve hardware-accelerated 

rendering

GPU Hardware Pipeline
• Series of stages executed in order

• Transforms data and performs calculations to generate final image

(Tons of handwaving and simplifying on the next few slides)

OpenGL and Direct3D (which is part of Microsoft’s DirectX framework) are APIs for 3D 
graphics that are used to interact with the GPU to achieve hardware-accelerated 
rendering.

GPU hardware has a series of stages that define a pipeline that I’ll refer to as the 
“OpenGL / Direct3D pipeline.”  When rendering an object, these stages are executed 
sequentially to transform the data and perform the calculations necessary to 
generate the final image.

I’m handwaving heavily here, but let’s look at a simplified example to give you some 
idea about what the processes is.
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OpenGL / Direct3D Rasterization Pipeline 
(simplified)
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Let’s say we want to draw this teapot, and we want to put it somewhere in a scene 
with other objects.  In real-time rendering, geometric models are usually made up of 
a bunch of triangles.  Let’s follow one triangle of this teapot model through the 
pipeline to generate the final pixels we’ll see on screen for that triangle.

(Again, I’m handwaving and over simplifying here in the interest of time.)
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OpenGL / Direct3D Rasterization Pipeline 
(simplified)
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GPU

Vertex 

Shade

The first step in the OGL / D3D pipeline is the Vertex Shade stage, which runs a piece 
of code for each vertex of the triangle to perform some calculations.

***Extra context for interested readers:***

For example, generally this is where vertex coordinates transformed to their locations 
within the scene.  (For example, a vertex that sits at the origin relative to the rest of 
the teapot probably doesn’t sit at the origin of the scene, especially if the teapot 
moves around.)

Now that we know where the vertices are in the 3D scene, we need to determine 
where they will end up on the final 2D image and generate the appropriate number 
of pixels for that triangle.
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OpenGL / Direct3D Rasterization Pipeline 
(simplified)

12

GPU

Vertex 

Shade
Rasterize

Then, the Rasterize stage chops up a triangle into pixels.  Once you have those 
pixels…

***Extra context for interested readers:***

While the Vertex Shade stage could execute user-written code to perform 
calculations, the Rasterizer is a fixed-function piece of hardware.  Its only job is to 
turn triangles into pixels, and it’s extremely efficient at it.
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OpenGL / Direct3D Rasterization Pipeline 
(simplified)
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GPU

Vertex 

Shade
Rasterize

Pixel 

Shade

(Once you have those pixels…)

The next stage is the Pixel Shade stage.  This stages run a piece of code on each pixel 
of the triangle to determine the color of that pixel, taking into account the artist-
authored materials as well as the various lights in the scene.
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OpenGL / Direct3D Rasterization Pipeline 
(simplified)

14

GPU

Vertex 

Shade
Rasterize

Pixel 

Shade
Depth Test

Then comes the Depth Test stage, where each pixel of the triangle is compared to the 
pixels from other triangles that overlap it.  The pixels closer to the camera “win,” and 
farther away pixels are discarded.
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OpenGL / Direct3D Rasterization Pipeline 
(simplified)

15

GPU

Vertex 

Shade
Rasterize

Pixel 

Shade
Depth Test Composite

Finally, we have Composite, which is where the non-discarded pixels of the triangle 
are written to the framebuffer, which will be displayed on screen once all triangles for 
this frame have been processed.

This is the basic OpenGL / Direct3D rasterization pipeline.
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OpenGL / Direct3D Rasterization Pipeline 
(simplified)
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GPU

Vertex 

Shade
Rasterize

Pixel 

Shade
Depth Test Composite

Fixed-function unit

In early GPU hardware, all of these stages were fixed-function pieces of hardware.  
They did have various degrees of user-configurable parameters to control their 
behavior, but they couldn’t execute arbitrary pieces of code.

(But in modern GPUs…)
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OpenGL / Direct3D Rasterization Pipeline 
(simplified)
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GPU

Vertex 

Shade
Rasterize

Pixel 

Shade
Depth Test Composite

Fixed-function unit

Programmable unit
Vertex Shader Pixel Shader

But in modern GPUs, some stages are now programmable.  Both the vertex and pixel 
shade stages allow you to run user-written code to perform calculations per-vertex 
and per-pixel, respectively.  This gives graphics programmers much more flexibility to 
implement interesting techniques, while still achieving a high degree of performance 
to meet that 16 millisecond-per-image time budget.

The user-written code that run on the GPU during pipeline execution are called 
“shaders.”

17



Fall 2020 12 October 2020
Trinity University Computer Science Colloquium

Shaders
(In the context of this talk)

Code that executes on the GPU as part of the rendering process
• E.g., vertex shader, pixel shader, compute shader, and others

Shaders are written in HLSL (Direct3D) or GLSL (OpenGL)
• These are “shading languages”

• C-like languages

• Very simple / feature-poor – no object orientation, no templates/generics*

* Slang [He et al. 2018] adds generics and some other modern features to HLSL

18

The term “shader” is a bit overloaded, so I’m going to discuss it in the context of this 
talk.

A shader is a piece of code that executes on the GPU as part of the rendering process.  
As we saw on the previous slide, there are Vertex Shaders which run on a per-vertex 
basis and Pixel Shaders which run on a per-pixel basis.  There are also Compute 
Shaders use a programming model similar to OpenCL and CUDA (if you’re familiar 
with those).

Shaders are written in a “shading language” – either HLSL if for applications using 
Direct3D or GLSL for OpenGL.

HLSL and GLSL are C-like languages; they are very simple and low-level.  They don’t 
have many higher-level features that you might be accustomed to working with, such 
as object orientation or templates / generics.  (As a side-note, I wanted to mention 
that Slang, which is a new shading language that my co-author Tim helped create, 
adds some more-modern programming language features to HLSL, including 
generics.)
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Pixel Shader Example

19

cbuffer LightData : register(b0) {

float3 lightDirection;

};

// Object / Material Data goes here

float4 main() {

return color * max(0, dot(normal,

lightDirection));

}

HLSL shader code (GPU)

Declare variables 
related to the light

Don’t worry about all the details.  I just want to highlight a few things.

First, we have declared some data related to the light.  The float3 datatype is just 
three single-precision floating point numbers packed together.  Similarly, the float4 
returned by the function is four single-precision floats packed together.

I’ve omitted the object and material data, for the sake of brevity.

***Extra context for interested readers:***

The light data is declared in a “constant buffer,” which basically means that this data 
is going to be the same for every pixel that we’re currently shading, since the light 
doesn’t change per pixel.
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Pixel Shader Example

20

cbuffer LightData : register(b0) {

float3 lightDirection;

};

// Object / Material Data goes here

float4 main() {

return color * max(0, dot(normal,

lightDirection));

}

HLSL shader code (GPU)

Compute the
pixel’s color

Then, we use the light data, along with the object and material data, to return a final 
color for whichever pixel we’re shading.

In this case, the shader is pretty simple, but don’t worry about the details of the 
math.

***Extra context for interested readers:***

Very very basically, in computer graphics, we treat typically triangles as if they are 
one-sided.  If the light is on the back side of the triangle, then the dot product of the 
normal vector and the light direction will be negative, so we’ll return 0 for the color 
of this pixel (because it’s not receiving illumination from this light on its proper side).  
Otherwise, we’ll modulate the object’s color by how directly the light is shining on 
the surface and return the result.
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Pixel Shader Example

21

cbuffer LightData : register(b0) {

float3 lightDirection;

};

// Object / Material Data goes here

float4 main() {

return color * max(0, dot(normal,

lightDirection));

}

HLSL shader code (GPU)

// Lots of gross code that I’m not going to

// show, except for:

MyLightData lightDataBuffer;

// Fill in light data

dxContext->PSSetConstantBuffer(0, 1,

&lightDataBuffer);

C++ code to set up shader (CPU)

Now, here’s the corresponding CPU-side code that sets up this shader for execution 
as part of the graphics pipeline on the GPU.  Well, ok actually I’m not showing most 
of it. It’s a lot of complex and gross code, but I do want to show a glimpse of how you 
communicate data from CPU to GPU.

Somewhere, the CPU-side representation of our scene has information about the 
light that we need to communicate to the GPU shader code.  In this case, we copy 
this data over to the GPU using the “PSSetConstantBuffer” function.  There are two 
important things I want to highlight about this code.
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Pixel Shader Example
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cbuffer LightData : register(b0) {

float3 lightDirection;

};

// Object / Material Data goes here

float4 main() {

return color * max(0, dot(normal,

lightDirection));

}

HLSL shader code (GPU)

// Lots of gross code that I’m not going to

// show, except for:

MyLightData lightDataBuffer;

// Fill in light data

dxContext->PSSetConstantBuffer(0, 1,

&lightDataBuffer);

C++ code to set up shader (CPU)

Completely different 
data structure on CPU 

and GPU!

Completely different 
data structure on CPU 

and GPU!

First, the data structure we’re using on the CPU is completely distinct from the data 
structure on the GPU.  Neither HLSL nor the Direct3D API perform any checks to 
ensure that the layouts of these data structures match (GLSL / OpenGL aren’t any 
better).  This is a potential source for bugs!
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Pixel Shader Example

23

cbuffer LightData : register(b0) {

float3 lightDirection;

};

// Object / Material Data goes here

float4 main() {

return color * max(0, dot(normal,

lightDirection));

}

HLSL shader code (GPU)

// Lots of gross code that I’m not going to

// show, except for:

MyLightData lightDataBuffer;

// Fill in light data

dxContext->PSSetConstantBuffer(0, 1,

&lightDataBuffer);

C++ code to set up shader (CPU)

Completely different 
data structure on CPU 

and GPU!

Magic number!  I hope 
they match in both CPU 

and GPU code!

Second, when we transfer the data from CPU to GPU, we tell the GPU to look for the 
data at a specific index.  Here, I’ve declared the data to be at index 0 (using the 
`register(b0)` code).  In the CPU code, I must then use that same index in the 
PSSetConstantBuffer function.  Again, HLSL and Direct3D don’t really help me here.  If 
I get it wrong, then I’ll have a bug in my code that might be hard to track down!  
(Again, GLSL/OpenGL aren’t any better.)

Now, to be fair, graphics developers rarely write this kind of code directly.  When 
you’re first learning OpenGL or Direct3D, you might, but when you’re developing a 
larger-scale graphics application, you’ll probably develop tools to help with this or 
make use of tools someone else has written (like a major game engine like Unity or 
Unreal Engine).  And that’s exactly where this talk is headed.  But there’s one more 
bit of background information I need to cover first, and that’s this thing called 
“specialization.”
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Shader Specialization
Three materials

• Standard Material

• Skin Material

• Cloth Material

Lots of other complex code to run along with material-specific code
• Need to slot in the material-specific code

• (We don’t want to copy-paste the complex code for each material)

Remember: HLSL/GLSL don’t have the features of higher-level languages 
you might be used to!

24

Let’s say that we have three different materials that need to use different pieces of 
code to calculate their color.  We have a standard material, that we use for most 
object.  But we also have characters in our game that have skin.  In order to make skin 
look good, we have to use special code that takes into account the properties of how 
light interacts with skin.  We also have a cloth material that has special code too.

Along with the material-specific shader code, we also have a bunch of other complex 
code that we need to run in the shader in order to calculate the pixel’s color.  So we 
need to be able to slot in the material-specific code, at the appropriate place in the 
shader.  Alternatively, we could copy-paste the other code to create three shaders –
one for each material.  But that would be a maintenance nightmare every time we 
need to change something.

If you’re thinking how you might do this in a programming language you’ve been 
using, remember: HLSL and GLSL don’t have many of the features you’re used to 
using (both for historical reasons, but also for performance reasons).
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Shader Specialization

25

Unspecialized Material Shader

float4 surfaceShader(…) {

…

if(isStandardMaterial(materialID)

color = evalStandardMaterial(…);

else if(isSkinMaterial(materialID)

color = evalSkinMaterial(…);

else if(isClothMaterial(materialID)

color = evalClothMaterial(…);

…

}

One way we could do this is with a dynamic branch.  At runtime in our shader, 
whenever we need to get an object’s color, we look at the material ID of the triangle 
we’re shading and choose which function to run accordingly.  This totally works!  We 
do have to manually maintain material IDs now, but that’s not too hard.

But it turns out, this solution can be detrimental to performance!  The code for this 
skin and cloth materials are much more complex than the code for the standard 
material.  When you’re shading cloth, for example, you of course have to pay the full 
runtime cost to run that code.  But actually, even if you never execute that code path, 
writing the code this way means that this shader will still incur some of the resource 
allocation costs of the cloth code.

So, even if we’re using this shader to shade an object that is just the standard 
material, we are still incurring some of the costs of the skin and cloth code, which 
hurts our performance!  (Remember: we can only spend ~16 milliseconds per frame, 
so every performance penalty is a problem!)

How can we fix this?  That’s where shader specialization comes in.

***Extra context for interested readers:***

25



One of the reason why the code still incurs some of the costs of the cloth and skin 
code, even when not executing those code paths, is because the shader compiler 
must allocation enough resource (e.g., registers) for the worse-case code path.  The 
cloth and skin material code uses many more registers than the standard material, 
meaning that when this shader runs the evalStandardMaterial() code path, those 
extra registers are effectively wasted (those registers could have been used by a 
different invocation of this shader working on a different pixel).  A good search term 
to learn more is “register pressure,” especially in the context of GPU programming 
(both for graphics and GPGPU).
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Shader Specialization

26

Unspecialized Material Shader Specialized Material Shader

float4 surfaceShader(…) {

…

if(isStandardMaterial(materialID)

color = evalStandardMaterial(…);

else if(isSkinMaterial(materialID)

color = evalSkinMaterial(…);

else if(isClothMaterial(materialID)

color = evalClothMaterial(…);

…

}

float4 surfaceShader(…) {

…

#if defined(STANDARD)

color = evalStandardMaterial(…);

#elif defined(SKIN)

color = evalSkinMaterial(…);

#elif defined(CLOTH)

color = evalClothMaterial(…);

#endif

…

}

Dynamically branch 
based on material ID at 

shader run time

Statically specialized 
variants generated at 
shader compile time

Instead of using dynamic, runtime branches that are evaluated at shader run time, we 
can instead use static, compile-time branches.  These will be evaluated when we 
compile the shader, depending on which material type we’ve defined.  

26
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float4 surfaceShader(…) {

…

#if defined(STANDARD)

color = evalStandardMaterial(…);

#elif defined(SKIN)

color = evalSkinMaterial(…);

#elif defined(CLOTH)

color = evalClothMaterial(…);

#endif

…

}

27

Shader
Compiler

float4 surfaceShader(…) {

…

color = evalStandardMaterial(…);

…

}

float4 surfaceShader(…) {

…

color = evalSkinMaterial(…);

…

}

float4 surfaceShader(…) {

…

color = evalClothMaterial(…);

…

}

Shader
Compiler

Shader
Compiler

SKIN

For example, we can generate a specialized shader variant just for the Standard 
material by defining STANDARD when we run the shader compiler.  This results in a 
shader that just contains the Standard material code, stripping out the code for the 
other two.

We can do the same for the Skin and Cloth material, resulting in three total compiled 
shader variants, each specialized for exactly one material.

Then, when shading an object, we can use the shader variant specific to the material 
of that object.  Generating specialized shader variants like these is very important in 
real-time computer graphics, not just for material, but for many different kinds of
options and features.

27



This is a good time for questions!
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float4 surfaceShader(…) {

…

#if defined(STANDARD)

color = evalStandardMaterial(…);

#elif defined(SKIN)

color = evalSkinMaterial(…);

#elif defined(CLOTH)

color = evalClothMaterial(…);

#endif

…

}

29

Shader
Compiler

float4 surfaceShader(…) {

…

color = evalStandardMaterial(…);

…

}

float4 surfaceShader(…) {

…

color = evalSkinMaterial(…);

…

}

float4 surfaceShader(…) {

…

color = evalClothMaterial(…);

…

}

Shader
Compiler

Shader
Compiler

SKIN

We talked about how important these specialized shader variants are for 
performance, but writing code this way is kind of a mess.  Maybe this simple example 
isn’t too bad, but when you have more materials, more lights, and many many other 
types of shader features you might want variants for, it can get unwieldy fast!

Maybe there’s a better way that we can write the code but still get optimized variants 
from it.  If you’re using plain ol’ HLSL and D3D (or GLSL and OpenGL), there’s not too 
much more you can do.  But what about other tools?  What if you use a game engine 
like Unity or Unreal?  Do they help with this?  Yes!  They do so by providing a shader 
system!
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What is a shader system?
A game engine component that facilitates 
interacting with the rendering process

Let’s start by defining what I mean by a “shader system.”

A shader system is a game engine component that facilitates interacting with the 
rendering process.

Specifically, I’m talking about real-time 3D game engines like Unreal, Unity, and other 
in-house engines, which means that not only is performance critical, but so is 
enabling a wide variety of users to control different aspects of rendering.

Let’s look at an example of what I mean…
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Artists

Shader
Code

Cross
Compiler

Game
Runtime

Artist
GUI 

Tools

Engine Users

Specialization
Framework

Shader System

Graphics 
Programmers

Technical Artists

31

We have different types of engine users who need to use a shader system in different 
ways.

First, we have graphics programmers who need to be able to write shader code, in 
HLSL or GLSL for example.

Of course that shader code needs to be complied into executable kernels, and 
possibly cross-compiled if you’re shipping on multiple platforms.

Then there’s technical artists who also write shader code.  Unlike graphics 
programmers, they are typically not experts in things like shader optimization.  
Maybe they’ll use plain HLSL or GLSL too, or maybe an engine chooses to provide a 
custom Domain-Specific Language (or DSL).

That DSL might enable them to express which parameters to expose to a GUI that 
artists use to create and configure different materials.

Those configurations, along with the shader code and compiled kernels, need to be 
interfaced with the runtime engine code, which sets up and launches the rendering 
work.

And finally, shaders need to be specialized in order to achieve the best performance.  
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(Specialization involves taking a shader that includes code and parameters for 
multiple different feature options, and then generating many different variants from 
that shader, each corresponding to a different subset of those features.  As a result, 
expensive features do not impact performance when they are not needed.)

Engine developers need to design these shader systems to both result in highly 
optimized final code while simultaneously providing the appropriate interfaces for 
each type of person involved in game development. But unfortunately…
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Graphics APIs don’t help with this task

Direct3D / OpenGL / etc. are singularly focused on providing robust, 
high-performance implementations on a wide range of hardware

In contrast, shader systems are multifaceted
• They must provide a variety of interfaces for different users

• Engine devs are left to create these missing facets, layered on top of the APIs

32

Graphics APIs don’t really help with this task.  They are singularly focused on 
providing a robust, high-performance implementation on a wide range of hardware.

But as we’ve established, shader systems are multifaceted – they must provide a 
variety of interfaces for different users.  Thus, engine developers are left to create 
layered implementations of these missing facets on top of the graphics APIs.

So how do they do that?
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Current Methods

Let’s look at some current methods used to implement shader systems.
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Four methods to implement shader systems

Plain C++ and HLSL*
• Preprocessor #ifdefs + #defines, shared headers for data structures, 

manually-authored C++ class for each shader

A simple, layered domain-specific language (DSL) with embedded HLSL*
• Unity’s ShaderLab

A more complex DSL that manipulates and generates HLSL*
• Bungie’s TFX language [Tatarchuk and Tchou 2017]

Modifying HLSL*
• Slang [He et al. 2018]

*or any modern shading language (e.g., GLSL or Metal Shading Language)

34

One is to just the facilities provided by plain C++ and HLSL.  (e.g., We could use 
preprocessor #ifdefs and #defines in the shader to express specialization options, 
create shared headers for data structure, and manually author a C++ class for each 
shader to provide an interface for CPU engine code.)

Another is to implement a simple, layered DSL that contains embedded HLSL.  Unity’s 
ShaderLab is an example of this approach.

You could also create a more sophisticated DSL that manipulates and generates HLSL, 
such as Bungie’s TFX language used in Destiny.

And finally, you could go so far as to modify HLSL to implement custom features, like 
the Slang shading language, which added some modern programming language 
features to HLSL.

In the paper, we go into details on all of these, but let’s briefly look at one in a little 
more detail.
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Shader “SurfaceShader” {

Properties { lightDirection {“Light Direction”, Vector} = (0,0,0) }

…

CGPROGRAM

#pragma multi_compile STANDARD SUBSURFACE CLOTH

float3 lightDirection;

float4 surfaceShader(…) {

…

#if defined(STANDARD)

color = evalStandardMaterial(shadingData);

#elif defined(SUBSURFACE)

color = evalSubsurfaceMaterial(shadingData);

#elif defined(CLOTH)

color = evalClothMaterial(shadingData);

#endif

return color * max(0, dot(shadingData.normal, lightDirection);

}

ENDCG

}

An example in Unity’s ShaderLab

35

Express specialization 
options using #if

Here’s an example shader written in Unity’s ShaderLab DSL.  I’m not going to discuss 
everything here, but I do want to highlight a few things.

First, specialization options are expressed using preprocessor #ifs, just like you would 
do if you were using plain HLSL.

One of the nice things that ShaderLab provides is…

***Extra context for interested readers:***

At first, expressing specialization options like this might seem fine, but what if (for 
some reason) you wanted to generate a specialized variant that contained both 
STANDARD and CLOTH material?  You couldn’t do that from this shader code.  Why 
might you want to generate such a variant?  Maybe you’re using a deferred renderer, 
but more on that later.
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An example in Unity’s ShaderLab

36

• Custom #pragma syntax enables 
ShaderLab compiler to 
automatically generate 
specialized variants

Custom #pragma 
syntax to list 

specialization options

Shader “SurfaceShader” {

Properties { lightDirection {“Light Direction”, Vector} = (0,0,0) }

…

CGPROGRAM

#pragma multi_compile STANDARD SUBSURFACE CLOTH

float3 lightDirection;

float4 surfaceShader(…) {

…

#if defined(STANDARD)

color = evalStandardMaterial(shadingData);

#elif defined(SUBSURFACE)

color = evalSubsurfaceMaterial(shadingData);

#elif defined(CLOTH)

color = evalClothMaterial(shadingData);

#endif

return color * max(0, dot(shadingData.normal, lightDirection);

}

ENDCG

}

ShaderLab has a custom #pragma syntax to list specialization options.

This enables the ShaderLab compiler to automatically generate all specialized shader 
variants, rather than requiring users to manually generate them.
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Shader “SurfaceShader” {

Properties { lightDirection {“Light Direction”, Vector} = (0,0,0) }

…

CGPROGRAM

#pragma multi_compile STANDARD SUBSURFACE CLOTH

float3 lightDirection;

float4 surfaceShader(…) {

…

#if defined(STANDARD)

color = evalStandardMaterial(shadingData);

#elif defined(SUBSURFACE)

color = evalSubsurfaceMaterial(shadingData);

#elif defined(CLOTH)

color = evalClothMaterial(shadingData);

#endif

return color * max(0, dot(shadingData.normal, lightDirection);

}

ENDCG

}

An example in Unity’s ShaderLab

37

• Custom #pragma syntax enables 
ShaderLab compiler to 
automatically generate 
specialized variants

Double declaration of 
artist-configurable 

parameters

Double declaration of 
artist-configurable 

parameters

In order to expose artist-configurable parameters to a GUI, ShaderLab has a special 
“Properties” listing.  But unfortunately, each of these parameters must be declared 
twice – once in the Properties and again in the embedded HLSL.
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An example in Unity’s ShaderLab
Shader “SurfaceShader” {

Properties { lightDirection {“Light Direction”, Vector} = (0,0,0) }

…

CGPROGRAM

#pragma multi_compile STANDARD SUBSURFACE CLOTH

float3 lightDirection;

float4 surfaceShader(…) {

…

#if defined(STANDARD)

color = evalStandardMaterial(shadingData);

#elif defined(SUBSURFACE)

color = evalSubsurfaceMaterial(shadingData);

#elif defined(CLOTH)

color = evalClothMaterial(shadingData);

#endif

return color * max(0, dot(shadingData.normal, lightDirection);

}

ENDCG

}
38

• Custom #pragma syntax enables 
ShaderLab compiler to 
automatically generate 
specialized variants

• Use a “stringly-typed” interface 
to set parameters:

Shader.SetVector(“lightDirection”,

Vector4(1.0, 1.0, 1.0, 1.0);

Bug!!!
lightDirection is a 

float3, not a float4

Bug!!!
lightDirection is a 

float3, not a float4

Finally, runtime engine code sets parameters using a “stringly-typed” interface.  This 
interface doesn’t provide good error checking, which can lead to subtle bugs, such as 
here where I’ve accidentally used the wrong type when setting the lightDirection
parameter.

Some of the other methods I mentioned improve upon these issues, but one 
important thing to note is that…
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Methods with greater capability require greater effort to use

Effort to use

Capability

C Preprocessor
Functionality

DSL with Embedded 
HLSL

DSL + HLSL 
Manipulation

Compiler 
Modification

39

These methods are on an unfavorable continuum.  Methods with greater capability 
require greater effort to use.

C preprocessor functionality is fairly simple to work with, but it’s limited in the types 
of things you can implement with it.

At the other end of the spectrum, if you’re willing to modify a compiler to add 
features to HLSL, you have a lot of flexibility but now you have a much larger 
codebase to maintain, especially as the core HLSL continues to evolve.

Engine developers today are faced with the problem of balancing between the 
benefits that new features might provide to users versus the effort required to 
implement those features.

What we’d really like is a technique that sidesteps this trade-off – one that provides 
lots of capabilities while requiring only a modest effort to use.

Based on this observation…
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Design Goals

(… Based on this observation)

as well as the other issues we’ve seen in modern shader systems, we came up with a 
set of design goals to guide our work.
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Design goals

Minimize implementation effort and maintenance costs
• E.g., we don’t want to build or modify a compiler

Early error detection
• Unlike “stringly-typed” interfaces

Don’t repeat yourself (DRY)
• Avoid repeat declarations of shader parameters, constant buffers, etc.

41

Each engine requires a unique shader system, customized to the engine’s design and 
the needs of its users.  If we can minimize the effort required to build and maintain 
shader systems, we can better enable developers to create robust, feature-rich 
implementations.

We’d like to be able to catch errors earlier, in contrast to “stringly-typed” interfaces in 
ShaderLab and in graphics APIs.

Programmers shouldn’t have to declare the same shader parameter, constant buffer, 
etc. more than once.
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Design goals (cont.)

Performance
• Minimize overheads to CPU and GPU code

Productivity for artists and technical artists
• Don’t hinder their workflows

Support options for static and dynamic feature composition
• To explore trade-offs between static and dynamic shader specialization

42

Performance is paramount in real-time graphics applications, so our system should 
strive to minimize overheads to GPU shader code and CPU engine code, as well as 
enable developers to explore opportunities to improve performance.

Productivity is key for artists, so a shader system must provide them with familiar 
workflows.

To achieve maximum performance, engines generate many specialized shader 
variants.  However, complete static specialization can lead to additional overheads 
that decrease performance.  So, we want our system to enable exploration of these 
trade-offs in the hopes of improving overall performance.

Given the landscape of existing solutions…
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None of these methods can achieve our goals

Effort to use

Capability

C Preprocessor
Functionality

DSL with Embedded 
HLSL

DSL + HLSL 
Manipulation

Compiler 
Modification

43

All make use of 
metaprogramming

?

Our first goal of minimizing implementation effort seems at odds with some of our 
other goals.  Certainly, we could achieve many of them by modifying a compiler and 
adding features to HLSL, but that requires a high implementation effort.

Is there a method that avoids this trade-off?

When examining these existing methods, we discovered that they all happen make 
extensive use of metaprogramming, whether they realize it or not.

So what is metaprogramming?
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Metaprogramming
Writing code that manipulates other code

• Including reading, analyzing, transforming, or generating code

Examples
• Compilers

• C preprocessor functionality

– (e.g., #if, #define, #include)

• Macros

44

float4 surfaceShader(…) {

…

#if defined(STANDARD)

color = evalStandardMaterial(…);

#elif defined(SKIN)

color = evalSkinMaterial(…);

#elif defined(CLOTH)

color = evalClothMaterial(…);

#endif

…

}

We broadly define metaprogramming as writing code that manipulates other code, 
including reading, analyzing, transforming, or generating code.

What are some examples?

With this definition, a compiler is doing metaprogramming.  A compiler reads in 
source code, performs analysis in order to find opportunities for optimization, 
performs those optimizations by transforming the code, and finally generates code 
that the hardware can execute.  A compiler is a very complex form of 
metaprogramming.

At the other end of the spectrum, we have the functionality provided by the C 
preprocessor. Those #ifs that we saw earlier are metaprogramming.  The #if lines here 
aren’t going to be executed at runtime.  Instead, they are going to be evaluated at 
compile time, which will result in different generated code depending on which of the 
material types has been #defined – it’s going to generate one of the three 
evalMaterial() lines.

Macros are also metaprogramming.  Macros are basically functions that are executed 
at compile time.  
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Metaprogramming
Writing code that manipulates other code

• Including reading, analyzing, transforming, or generating code

Examples
• Compilers

• C preprocessor functionality

– (e.g., #if, #define, #include)

• Macros

45

#define square(x) x * x

int main() {

...

int fooSquared =

square(foo);

...

}

#define square(x) x * x

int main() {

...

int fooSquared =

foo * foo;

...

}

Here’s a simple macro example.  Many languages have macros with different degrees 
of functionality.  This example is in C/C++, since C++ is the industry standard in game 
development.

In this example, I’ve defined a macro called “square” that will compute the square of 
a number.

When we use “square” in a function, we’re not actually calling that macro at runtime.  
Instead, that macro is evaluated at compile time and code is generated as a result.  In 
this case, the call to the “square” macro will be replaced with “foo * foo,” as shown 
on the right.

That is broadly what metaprogramming is – writing code that manipulates other 
code.  There are many techniques that involve metaprogramming…
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None of these methods can achieve our goals

Effort to use

Capability

C Preprocessor
Functionality

DSL with Embedded 
HLSL

DSL + HLSL 
Manipulation

Compiler 
Modification
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All make use of 
metaprogramming

?

(There are many techniques that involve metaprogramming…)

Including these methods used to implement shader systems.  And that was our key 
insight – all of these methods make extensive use of metaprogramming.

Using this key insight, we decided to make metaprogramming a fundamental design 
principle at the core of our shader system, and to find a metaprogramming technique 
that sidesteps this apparent trade-off between capability and complexity.

As I’m sure you can guess from the title of this talk…
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Staged metaprogramming enables us to achieve our goals

Effort to use

Capability

C Preprocessor
Functionality

DSL with Embedded 
HLSL

DSL + HLSL 
Manipulation

Compiler 
Modification

47

All make use of 
metaprogramming

Staged
Metaprogramming

The technique we identified is staged metaprogramming.
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Staged Metaprogramming

So, what is staged metaprogramming…
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Staged metaprogramming

Explicit stages of code execution
• E.g., compile-time stage / runtime stage

Code running in earlier stages can construct and manipulate code in 
later stages

Consistent with description of multi-level languages [Taha 1999]
• Also includes multi-stage languages

49

In staged metaprogramming, there are multiple explicit stages of code execution.  For 
example, we could have a stage that conceptually executes at application compile 
time, versus a stage that executes at application run time.

Code running in an earlier stage of execution can construct and manipulate code that 
will run in a later stage.

Our definition of staged metaprogramming aligns with the description of a multi-level 
language and also includes multi-stage languages as well.  If you’re familiar with 
those terms, this might provide some extra context.

So what makes up a staged metaprogramming environment?
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Key features of staged metaprogramming

Code is a first-class citizen
• Pass as arguments, return from functions, store in structs

Code is constructed using regular language syntax using quasi-quote
• myCode = quote var outColor = diffuse + specular end
• Quasi-quotes are hygienic and lexically scoped (but you can violate this)

Unquote inserts quasi-quoted code into the runtime application
• [myCode]

Quasi-quotes can be specialized to generate different version

50

Let’s talk about the key features.

Code is a first-class citizen.  Programs can operate on code in the same way that they 
can operate on other constructs, including passing code as arguments, returning code 
from functions, and storing code in data structures.

Code is constructed using regular language syntax using quasi-quote.  In this example, 
we have the keywords “quote” and “end” to denote that we’re constructing code.  
The code between these keywords is expressed using regular syntax, but this code is 
not executing here.  Instead, it is stored in the “myCode” variable for use later.

These quotes are hygienic and lexically scoped, so the definition of “outColor” here 
would not conflict with another variable using the same name elsewhere (unlike 
preprocessor macros).  However, you intentionally can violate this property when 
needed.

The unquote operator splices quoted code into the runtime application.  Here we’re 
taking the myCode variable and inserting its contents into the program.

Also, quotes can be specialized to generate different versions, similar to how shaders 
can be specialized into different variants.
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If you’re used to working in C++ or another popular systems language, you’re 
probably not used to seeing these quote and unquote constructs.  Well that’s 
because…
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Lua-Terra: a research substrate for staged 
metaprogramming

C++ and HLSL don’t have the features of staged metaprogramming

So, we used Lua-Terra [DeVito et al. 2013] to explore our ideas
• Multi-stage language

• Uses Lua code in the first stage to manipulate next-stage Terra code

Lua – high-level scripting language
Terra – simple, low-level, C-like language

51

These languages don’t have the features required for staged metaprogramming.

We used a language called Lua-Terra to demonstrate how staged metaprogramming is 
useful for shader systems.  Lua-Terra is a multi-stage language that uses Lua code in 
the first stage to manipulate and generate next-stage Terra code

You might be familiar with Lua.  It is a high-level scripting language commonly used in 
game development already.

In contrast, Terra is simple, low-level, C-like language.  We chose Lua-Terra specifically 
because Terra models the lower-level systems language environment that is 
commonly used in engine development.

However, high-level scripting and code generation can be expensive operations, and 
as we know performance is critical for game engines…
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Compile-time staged metaprogramming

Performance is important, so all metaprogramming occurs at 
application compile time

• Avoids overhead of generating code at runtime

• In contrast to prior work (e.g., Sh [McCool et al. 2002] and Vertigo [Elliott 2004])

All Lua code executes at compile time

Runtime application and shader code are written in Terra

52

So in our system, all metaprogramming occurs at application compile time.  We aren’t 
generating any code while the game is running, all of that happens beforehand.  This 
is in contrast to prior work, which generates code at runtime.

On the last slide, I mentioned that the Lua code metaprogrammings the Terra code, 
and since all of the metaprogramming happens at compile time, all of the Lua code 
executes at compile time as well.  We don’t run any Lua code during game runtime 
(although we could if we wanted to add Lua scripting into the application).

What’s left at runtime is just the C-like Terra code.  The game runtime, as well as all 
shader code are written in Terra.

Now let’s take a look at a shader in our system, which we call Selos.
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Example shader in our system (called Selos)
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shader SurfaceShader {

ConfigurationOptions {

MaterialType = MaterialSystem.MaterialTypeOption.new()

}

…

uniform LightData {

@UIType(Slider3) lightDirection : vec3

}

…

fragment code

…

color = [MaterialType:eval()](shadingData)

return color *

max(0, dot(shadingData.normal, lightDirection);

end

}

Single declaration of 
parameter

Again, I’m just going to highlight a few key points.

Unlike in ShaderLab, in Selos we can express GUI controls directly alongside the 
parameter declaration, avoiding the double-declaration problem.
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Example shader in our system (called Selos)
shader SurfaceShader {

ConfigurationOptions {

MaterialType = MaterialSystem.MaterialTypeOption.new()

}

…

uniform LightData {

@UIType(Slider3) lightDirection : vec3

}

…

fragment code

…

color = [MaterialType:eval()](shadingData)

return color *

max(0, dot(shadingData.normal, lightDirection);

end

}

54

• Statically-checked interface to shaders:

var myShader = SurfaceShader.new()

var lightData =

myShader.LightData:map(…)

lightData.lightDirection = vec4(…)

Compile-time error: 
lightDirection is a vec3

Compile-time error: 
lightDirection is a vec3

Our system generates a statically-checked interface for shaders, meaning that that 
bug from my ShaderLab code before is instead reported as a compile-time error in 
Selos.

Instead of using preprocessor #if…
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shader SurfaceShader {

ConfigurationOptions {

MaterialType = MaterialSystem.MaterialTypeOption.new()

}

…

uniform LightData {

@UIType(Slider3) lightDirection : vec3

}

…

fragment code

…

color = [MaterialType:eval()](shadingData)

return color *

max(0, dot(shadingData.normal, lightDirection);

end

}

Example shader in our system (called Selos)

55

• Statically-checked interface to shaders:

var myShader = SurfaceShader.new()

var lightData =

myShader.LightData:map(…)

lightData.lightDirection = vec4(…)

• Automatically generate variant (like 
ShaderLab)

• Opportunity to explore more 
specialization options (we’ll return to 
this)

Specialization expressed 
and controlled through 
ConfigurationOptions

Specialization expressed 
and controlled through 
ConfigurationOptions

Shader specialization is expressed and controlled through ConfigurationOptions.

This allows Selos to automatically generate all variants (like in ShaderLab).

And it also enables us to explore other options for shader specialization.  I mentioned 
before that you couldn’t generate a shader with both STANDARD and CLOTH 
materials from the ShaderLab code, but in ours we easily can.  We’ll return to this 
part later.

Staged metaprogramming is the principle design decision in our system…
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Example shader in our system (called Selos)
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shader SurfaceShader {

ConfigurationOptions {

MaterialType = MaterialSystem.MaterialTypeOption.new()

}

…

uniform LightData {

@UIType(Slider3) lightDirection : vec3

}

…

fragment code

…

color = [MaterialType:eval()](shadingData)

return color *

max(0, dot(shadingData.normal, lightDirection);

end

}

But looking at this example shader, notice that those quote and unquote mechanisms 
I described earlier don’t show up in this code.  In fact, this shader looks pretty similar 
to a shader written in GLSL or HLSL, and it doesn’t really exhibit aspects of staged 
metaprogramming directly.  This design is intentional.

While staged metaprogramming underlies our system’s implementation, it also 
introduces some new and unfamiliar programming constructs.  How do we cope with 
that?
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Other Key Design Decisions

That leads me to our other key design decisions.
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Other key design decisions

Write shader definitions using a domain-specific language (DSL)
• Present a familiar interface to technical artists

• Don’t expose the metaprogramming directly

Represent shaders as compile-time Lua objects
• Consistent interface to manipulate shader code

• Compile-time only, so it doesn’t add runtime overhead

58

First, shaders are written in a DSL that’s similar to GLSL.  This provides a familiar 
interface to technical artists, so that they can be productive without worrying about 
those new metaprogramming constructs.  So how do we use staged 
metaprogramming then?

Internally in the system, we represent shaders as compile-time Lua objects.  This 
provides a consistent interface to manipulate shader code, since we can store code 
directly in data structures.  Because it only exists at compile time, this representation 
does not add overhead to the runtime application.

While shader-specific features are expressed through our DSL…
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Other key design decisions (cont.)

Write shader logic and application code in the same language
• Share types and functions between CPU and GPU code

Generate runtime data structures for shaders
• Statically-checked interface – catches errors at application compile time

• Downside: must recompile application whenever a shader’s interface changes

– But we can hot reload if only the logic changes

59

Core shader logic as well as CPU-side code is written in Terra.  This allows us to share 
types and functions between CPU and GPU code.  This is something that you don’t 
typically get when you’re using C++ for the CPU code and HLSL for the GPU code.  But 
you get that for free in our system.

As I mentioned earlier, we generate runtime data structures for shaders, which helps 
us catch more errors at compile time.  However, this means that the game must be 
recompiled if the interface to a shader changes, like if you add a parameter for 
example.  But if only the core logic changes, we can still hot reload shaders.  It’s a bit 
of a trade-off – the application needs to be recompiled more often, but it does 
provide better error checking.

I want to take a second to point out that…
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Improvements over 
ShaderLab, but with 
similar lines of code

Our implementation required only a modest effort

60

Improvements over 
ShaderLab, but with 
similar lines of code

Backends are 
reusable

Our implementation of these features required only a modest effort.  The lines of 
code of the Selos core is comparable to that of Unity’s ShaderLab implementation, 
while also improving on some of ShaderLab’s issues.  And both are much smaller than 
building or modifying a compiler.

We also had to implement backends to convert Terra to HLSL and GLSL, but we 
believe that these components are not engine-specific and could be shared across 
shader systems as an open source component.
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This is a good time for questions!

In the previous design decisions, we recommend hiding the complexities of 
metaprogramming from many shader writers behind our shader DSL.  But the power 
of raw metaprogramming provides the ability to implement some interesting 
features…
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Other key design decisions (cont.)

Implement complex specialization options using raw 
metaprogramming

• Allows expert graphics programmers to explore the specialization design 
space

62

So we encourage expert graphics programming to use the features of staged 
metaprogramming directly when implementing specialization frameworks.

So let’s look at a case study of something interesting we can do in Selos using staged 
metaprogramming…
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Case Study: 
Exploring the Specialization 
Design Space

Which is to explore the shader specialization design space.  Specifically, we’re going 
to look at specialization in a deferred renderer.
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Forward Rendering

64

Material/Light 
Calculations

GBuffer
(store geometry/

material data)
Framebuffer

Triangles Pixels

Triangles Pixels
Material/Light 
Calculations

Framebuffer

Triangles Pixels
Material/Light 
Calculations

Triangles Pixels

Deferred Rendering

What we’ve talked about so far has been through the lens of forward rendering.  You 
have an object that’s composed of triangles, you chop those triangles up to generate 
pixels, you perform the material and lighting calculations to determine the pixel’s 
color, and then you composite the pixels into the framebuffer to eventually display on 
screen.  Rinse, repeat for every object in your scene, overwriting pixels in the 
framebuffer if newly generated pixels are closer to the camera.

In contrast, deferred rendering “defers” the material and lighting calculations until 
later.  Instead, you take the triangles, rasterize them into pixels, and then store 
information about those pixels into a GBuffer (short for Geometry Buffer).  This 
include geometric data as well as material data.  The GBuffer stores one set of data 
per final on-screen pixel, so if another object produces a pixel that’s closer to the 
camera, it’s pixel data will overwrite whatever data is already stored in the GBuffer.  
Once you’ve processed all objects and stored the pixel data into the GBuffer, then you 
run the material and lighting calculations by fetching data from the GBuffer to 
calculate final pixel colors.

Deferred rendering can be significantly faster than forward rendering because it only 
performs the really expensive material and lighting calculations once per final, 
displayed pixel, whereas in forward rendering, you might perform that expensive 
calculation for one pixel, only for that pixel to be discarded because a pixel from a 
different object is closer to the camera.  (I’m handwaving and oversimplifying heavily 
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here.  There are other benefits of deferred rendering, and there are other ways to 
prevent “overdraw” in forward rendering.)

But one of the problems with deferred rendering is that we can’t do that complete 
specialization that I talked about previously.
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Specialization in deferred rendering

65

Forward Lighting Shader Deferred Lighting Shader

float4 surfaceShader(…) {

…

#if defined(STANDARD)

color = evalStandardMaterial(…);

#elif defined(SUBSURFACE)

color = evalSubsurfaceMaterial(…);

#elif defined(CLOTH)

color = evalClothMaterial(…);

#endif

…

}

float4 surfaceShader(…) {

…

if(isStandardMaterial(materialID)

color = evalStandardMaterial(…);

else if(isSubsurfaceMaterial(materialID)

color = evalSubsurfaceMaterial(…);

else if(isClothMaterial(materialID)

color = evalClothMaterial(…);

…

}

Statically specialized 
variants generated at 
shader compile time

Dynamically branch 
based on material ID at 

shader run time

Here’s what a material shader might look like in a forward renderer.  We’re using 
preprocessor #ifs to denote different code paths based on the type of material we’re 
rendering, and then we can generate statically specialized variants at shader compile 
time for each material, one variant per material.

However, when performing shading in a deferred renderer, different pixels in the 
GBuffer might require different material features.  So, the shader must be able to 
dynamically enable or disable features per-pixel at shader run time, based on 
material ID in this case.

Even when complete static specialization is not feasible, some specialization can still 
be beneficial.
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Deferred lighting specialization in Uncharted 4

66 [El Garawany 2016]
Image from “Deferred Lighting in Uncharted 4” by Ramy El Garawany (Naughty Dog),
Advances in Real-Time Rendering in Games: Part I, SIGGRAPH 2016

For example, the deferred lighting pass in Uncharted 4 made use of partial 
specializations.

In the default deferred rendering setup, after generating the GBuffer, the renderer 
launches the material and lighting calculation shader on all pixels at once.
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Deferred lighting specialization in Uncharted 4

67 [El Garawany 2016]

Uber Shader
(all materials)

Image from “Deferred Lighting in Uncharted 4” by Ramy El Garawany (Naughty Dog),
Advances in Real-Time Rendering in Games: Part I, SIGGRAPH 2016

(In the default deferred rendering setup, after generating the GBuffer, the renderer 
launches the material and lighting calculation shader on all pixels at once.)

Thus, the renderer must use a shader that contains code for all materials.
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Deferred lighting specialization in Uncharted 4

68 [El Garawany 2016]
Image from “Deferred Lighting in Uncharted 4” by Ramy El Garawany (Naughty Dog),
Advances in Real-Time Rendering in Games: Part I, SIGGRAPH 2016

Instead of launching all pixels at the same time, we can instead dispatch pixels on a 
per-tile basis.

What benefit does this give us?
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Deferred lighting specialization in Uncharted 4

69 [El Garawany 2016]

Standard

Marble

Cloth

(Etc.)

Standard Only
Shader

Standard + Cloth
Shader

Cloth Only
Shader

Uber Shader
(all materials)

Image from “Deferred Lighting in Uncharted 4” by Ramy El Garawany (Naughty Dog),
Advances in Real-Time Rendering in Games: Part I, SIGGRAPH 2016

If we look at the different materials in this scene, we can see that pixels near each 
other tend to be the same material type.

So, when we dispatch a tile whose pixels are all the standard material, we can use a 
shader that only has standard material code.

Similarly, for this tile, we can use a cloth-only shader.

This tile overlaps both standard and cloth pixels, so we need to use a shader that has 
code for both.

And sometimes, we might have to fall back to that default uber shader with all 
materials.

This design significantly improved performance for Uncharted 4.  But, as you might 
realize, this results in many shader variants for all possible combinations of materials, 
and it turns out that…
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Deferred lighting specialization in Uncharted 4

Generated per-tile bitmask of features needed in that tile
• E.g., This 16x16 tile contains metal and fabric

Dispatch tiles using shaders variants specialized for different feature 
combinations

• E.g., Render this tile with a shader that just has metal and fabric code

If all pixels in a tile are the same material, use a “branchless” variant
• E.g., This tile is all fabric, so dispatch using a fabric-only shader that omits 

checking materialID

70 [El Garawany 2016]

(Skipping this slide during the talk, but leaving it here for interested readers.)

***Extra context for interested readers:***

The deferred lighting pass in Uncharted 4 made use of partial specializations.

First, it splits the screen space into 16 by 16 pixel tiles and generates a per-tile 
bitmask of all of the material features present in that tile.  For example, let’s say a 
given tile contains some pixels that should be rendered as metal and others that 
should be rendered as fabric.

Then, it dispatches tiles using different shaders, specialized for particular feature 
combinations.  So that tile containing both metal and fabric would be rendered using 
a shader that just contains metal and fabric code.  Code for other types of materials 
would be striped away from that variant.

As an optimization, if all pixels in a given tile are the same material, they dispatch it 
using a “branchless” variant.  So if a tile is only fabric, for example, the shader can 
skip checking the material ID.

This design significantly improved performance for Uncharted 4.  But, as you might 
realize, this results in many shader variants, and it turns out that…
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Overspecialization can hurt performance!

Lots of shader variants!
• Increases shader switching overhead, dispatch overhead, game load time, etc.

Do we need all of these specializations?

Staged metaprogramming enables exploration of this design space

71

Overspecialization can actually hurt performance!

Having lots of variants increases shader switching overhead, dispatch overhead, and 
game load time.

Do we really need all of these specialized variants?  It’s likely that some materials are 
more important to specialize than others.

We can explore this design space in Selos using staged metaprogramming.
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Placeholder Slide

This is a placeholder slide
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Standard 
Material with 

Clearcoat

Standard 
Material

Subsurface 
Material

Cloth 
Material

We also specialize on 
light types:

Point Light
Shadowed Point Light

Original scene:
[Epic Games 2017]

We implemented a deferred renderer and also implemented specialization similar to 
Uncharted 4’s for our deferred lighting shader.

We used our system to render the Sun Temple scene from the ORCA repository, but 
we had to make a few modifications.

Like most other widely available scenes, this scene does not specific what type of 
BRDF to use for each material.  So we chose to render certain objects with different 
BRDF types in order add some material variation.  We also added some cloth 
geometry, which isn’t in the original scene.

We also specialize based on light types by doing light culling, and then determining 
whether a tile does or does not contain at least one of a given light type.

This gives us six different features that we can specialize – four material features and 
two light features.

So we generated all of the possible variants, but then we also restricted our system to 
only specialize some of the material and light features.
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Partial specialization achieves the best performance
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Complete specialization allowed.
Lots of shader variants!

No specialization allowed.
One variant for everything!

What we found is that partial specialization achieves the best performance.

This graph measures the GPU performance of our deferred lighting pass.

On the X axis, we have the number of material and light features we’re allowing to be 
specialized, with the total number of generated variants in parentheses.  For 
example, the zero case mean we’re not allowing any features to be specialized, so the 
only shader variant is the typical deferred lighting shader, which uses dynamic 
branches for all feature selection.  On the other end, we allow specialization for all 
features, which generates variants for all possible combinations of features, resulting 
in 60 total variants.

On the Y axis, we have the relative GPU performance compared against the baseline 
deferred lighting shader, which again has no specialization.
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Partial specialization achieves the best performance
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What we observe is that increasing the amount of specialization increases 
performance, but only to a point.  Then, performance starts to degrade.  So 
overspecialization decreases performance, and the sweet spot is in the middle.

As a sanity check, we also handwrote an HLSL shader for the typical deferred shader 
case, to make sure our abstractions weren’t adding overhead.
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Partial specialization achieves the best performance
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(As a sanity check, we also handwrote an HLSL shader for the typical deferred shader 
case, to make sure our abstractions weren’t adding overhead.)

As you can see, it performs similarly to the version generated by our system.

Our test scene only has 14 lights, whereas game often have many more.  We wanted 
to see how performance changes as we increases the amount of lighting 
computations to be more in line with modern 3D games…
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Partial specialization achieves the best performance
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What we found is that as the amount of lighting work increases, the effects of 
specialization is even more pronounced.  And still, partial specialization produced the 
best results.

This and other types of exploration is something a shader system should help you 
with, and…

// Note: The reason why there are only 60 variants in the last case, rather than 64 –
When enabling specialization for all 6 features, the system generates variants for all 
possible combinations of material and lighting features.  For each feature, there’s 
basically a choice of whether to include it in the shader or to omit it, hence there will 
be 2^6 = 64 variants.  However, in the variants where all material features are 
omitted from the shader, there’s no material to shade, so those shaders are 
effectively invalid.  There are four such cases – when all of the material and light 
features are omitted, when only both light features are enabled, or when either one 
or the other light feature is enabled.  So we’re left with 60 total valid variants.

76



77

95%

100%

105%

110%

115%

120%

125%

130%

H (1) 0 (1) 1 (2) 2 (4) 3 (8) 4 (16) 5 (32) 6 (60)

G
P

U
 P

er
fo

rm
an

ce
 R

el
at

iv
e

to
 N

o
 S

p
ec

ia
liz

at
io

n

Number of Specialized Features (Number of Variants)

1 x Lighting 2 x Lighting 5 x Lighting 10 x Lighting

Staged metaprogramming enabled 
this exploration in our system

Partial specialization achieves the best performance

We could easily perform this exploration in our system because of our principled use 
of staged metaprogramming.
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Wrapping Up
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Summary

Staged metaprogramming is a key methodology for shader system 
development

Using it, we build the Selos shader system
• Same language for CPU & GPU code

• Statically-checked shader interface

• Performance improvements through design space exploration

We build everything in user-space code, using off-the-shelf Lua-Terra

79

We identified staged metaprogramming as a key methodology to aid in shader system 
development.

We used it to build a shader system that uses the same language for both CPU and 
GPU code, provides statically-checked interfaces to shaders to catch more errors 
earlier.  And we were able to improve performance of our deferred renderer by 
exploring the shader specialization design space.

I want to emphasize that we build everything in user-space code, using off-the-shelf 
Lua-Terra.  We didn’t modify the Lua-Terra compiler at all.

Unfortunately, popular systems languages today don’t have all the features required 
for staged metaprogramming, but…
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The future of metaprogramming

Systems languages are trending towards better metaprogramming 
facilities

• Rust

• Various C++ proposals (e.g., [Sutter 2018], [Chochlik et al. 2018])

• Circle compiler for C++ [Baxter 2019]

80

They are trending in the right direction.  The Rust language has some interesting 
features.  There’s various proposals about metaprogramming to the C++ committee, 
such as metaclasses and better support for compile-time reflection.  And there’s also 
the Circle compiler, which adds new introspection, reflection, and compile-time 
execution features to C++.

So hopefully in the future, the features of staged metaprogramming will be available 
in modern systems languages.

But beyond shader systems…
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Heterogeneous programming for graphics

NVIDIA’s CUDA language gives GPU compute code first-class, 
heterogeneous treatment in C++

How can we achieve the same for GPU graphics code?
• Many additional challenges!

81

I’m interested in thinking more broadly about about heterogeneous programming for 
graphics.

NVIDIA’s CUDA language gives GPU compute code (General Purpose GPU Computing, 
or GPGPU) first-class, heterogeneous treatment in C++.  How can we achieve the 
same for GPU graphics code?  Graphics has many additional challenges!

Our work is a step in the right direction.  We can use the same language for CPU and 
GPU code and provide some nice shader interfaces, but it’s far from achieving true 
heterogeneity.

And furthermore...
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Heterogeneous programming for graphics … and 
other domains?
Graphics is a challenging domain!

• Can we apply the lessons to other areas?

Potentially many future processor types
• We need programming models to support them

Staged metaprogramming allowed us to add support for a different 
processor type (GPU) purely as library code

• No fundamental language changes → don’t have to involve standard bodies

82

What about other domains?

Graphics provides a complex and well-explored area in which to investigate the 
broader concept of heterogeneity. Can we apply the lessons we learn about graphics 
programming in other domains?

In a future with potentially many different processor types, we need programming 
models to support them.

What I think is really interesting is that staged metaprogramming allowed us to add 
support for a different processor type purely as library code.  We didn’t have to 
modify Terra at all.  And I think that’s a very powerful property of staged 
metaprogramming.
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sa2019.siggraph.org

Thank you
Kerry A. Seitz, Jr.

kaseitz@ucdavis.edu
Code: github.com/kseitz/selos Paper & Slides: seitz.tech

And also the source code is available on GitHub, and you can find the full paper and 
slides on my website.

Thank you for your attention!
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This is a good time for questions!
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CPU performance decreases with increased specialization

This is a placeholder slide
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More specialization means more variants.  So, as we expected, there is more CPU 
overhead needed to bind the variants and dispatch tiles.  So, CPU performance 
decreases with increased specialization.
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