
Supporting Unified Shader
Specialization by Co-opting C++
Features
Kerry A. Seitz, Jr.,*‡ Theresa Foley,†

Serban D. Porumbescu,* and John D. Owens*

*University of California, Davis

†NVIDIA

‡Now at Wētā Digital x Unity Technologies

Hi, my name is Kerry Seitz, and I’ll be presenting our work, Supporting Unified Shader
Specialization by Co-opting C++ Features, on behalf of my coauthors Theresa Foley,
Serban Porumbescu, and John Owens.

The overarching motivation of this work is to think about the problem of the strict
divide between host (CPU) code and GPU code that we have in real-time graphics
programming.

1

Strict divide between host (CPU) and GPU code

2

GPU

VS HS DS GS PS Compute

CPU

Threads SIMD

Sets up and invokes
rendering work
(written in C++)

Highly parallel rendering
calculations

(written in HLSL or GLSL)

In real-time rendering, we generally have some code running on GPUs performs
highly parallel rendering calculations written in a special-purpose shading language
like HLSL or GLSL.

And there’s corresponding host code sets up and invokes the rendering work,
including choosing which bits of GPU code to invoke and passing parameters to the
GPU, and other communication and coordination between host and GPU code. This
is written in a general-purpose systems language like C++.

And in the real-time graphics APIs, there’s a really strict divide between these two
portions of code, which results in a lot of pain points, like subtle bugs if the two
halves of code are not kept in sync with each other.

Instead, what I think we really want is a “unified” programming model for real-time
graphics.

2

Unified Programming Environments
• Host code and GPU code are in the:

• Same programming language
• Same file
• Same lexical scope

• Benefits of Unified Programming
• Host/GPU can share types and functions
• Guaranteed compatibility between host/GPU

• No magic number “bindings points,” just proper variables
• Type layouts are the same

• Unified Systems for GPU Compute
• CUDA and SYCL

3

In these so call “unified” environments, host and GPU code can be in the same
programming language, same file, and same lexical scope.

Unified systems have inherent benefits, such as sharing types and functions between
host and GPU code and compatibility guarantees. Host and GPU code can
communicate using proper variables, not magic number binding points, and type
layouts are guaranteed to be the same.

Unfortunately, none of the real-time graphics APIs provide unified environments, but
in the GPU compute space, unified system are the standard, like CUDA and SYCL.

So you may be wondering … Can’t real-time graphics just use CUDA or SYCL?

3

Can’t graphics just use CUDA or SYLC?
Yes.

4

Yes.

4

Thank you!
Kerry A. Seitz, Jr., Theresa Foley, Serban D. Porumbescu, and John D. Owens

kaseitz@ucdavis.edu

Source Code:

https://github.com/owensgroup/UnifiedShaderSpecialization

Thank you for coming to my talk, you’ve been a great audience.

5

Can’t graphics just use CUDA or SYLC?
No.

Existing popular unified systems lack adequate
support for GPU shader code specialization

6

Ok, not really.

There are multiple reasons why graphics can’t just use one of these existing systems.

In this work, we focused one in particular: the lack of adequate support for GPU
shader code specialization.

So what is shader specialization. Let’s look at an example.

6

Shader Specialization
• Three materials

• Standard Material

• Skin Material

• Cloth Material

• Lots of other complex code to run along with
material-specific code
• Need to slot in the material-specific code

7

Let’s say that we have a scene with three different materials that need to use
different pieces of code to calculate their final rendered color. We have a standard
material, that we use for most object. Special materials for skin and cloth.

Along with the material-specific shader code, we also have a bunch of other complex
code that we need to run in the shader in order to calculate the pixel’s color. (Lots of
handwaving here about what that is.) So we need to be able to slot in the material-
specific code, at the appropriate place in the shader.

7

Shader Specialization

8

Specialized Material Shader

float4 surfaceShader(…) {

…

#if defined(STANDARD)

color = evalStandardMaterial(…);

#elif defined(SKIN)

color = evalSkinMaterial(…);

#elif defined(CLOTH)

color = evalClothMaterial(…);

#endif

…

}

Statically specialized

variants generated at

shader compile time

To get the best performance, what shader programmers typically do is express these
specialization options as static, compile-time branches. These will be evaluated when
we compile the shader, depending on which material type we’ve defined during
compilation.

8

float4 surfaceShader(…) {

…

#if defined(STANDARD)

color = evalStandardMaterial(…);

#elif defined(SKIN)

color = evalSkinMaterial(…);

#elif defined(CLOTH)

color = evalClothMaterial(…);

#endif

…

}

Shader
Compiler

float4 surfaceShader(…) {

…

color = evalStandardMaterial(…);

…

}

float4 surfaceShader(…) {

…

color = evalSkinMaterial(…);

…

}

float4 surfaceShader(…) {

…

color = evalClothMaterial(…);

…

}

Shader
Compiler

Shader
Compiler

SKIN

9

We can generate a specialized shader variant just for the Standard material resulting
in a compiled shader that just contains the Standard material code, stripping out the
code for the other two.

We can do the same for the Skin and Cloth material, resulting in three total compiled
shader variants, each specialized for exactly one material.

So when we’re rendering an object that uses the standard material, we don’t pay any
of the costs associated other materials, such as shared local memory usage and
higher register pressures.

9

Shader Specialization: Host vs. GPU

10

Compile GPU Shader Variants

float4 surfaceShader(…) {

…

color = evalStandardMaterial(…);

…

}

float4 surfaceShader(…) {

…

color = evalSkinMaterial(…);

…

}

float4 surfaceShader(…) {

…

color = evalClothMaterial(…);

…

}

Standard
Variant

Skin
Variant

Cloth
Variant

Host code to invoke GPU code

void (auto shape : allShapes) {

if(shape.materialType == mat::STANDARD)

invokeStandardVariant();

else if(shape.materialType == mat::SKIN)

invokeSkinVariant();

else if(shape.materialType == mat::CLOTH)

invokeClothVariant();

}

Then, when shading an object, we can use the shader variant specific to the material
of that object.

On the left the corresponding host code that chooses which variant to invoke based
on the runtime information in the scene being rendered.

10

Shader Specialization: Host vs. GPU

11

Host code to invoke GPU code

void (auto shape : allShapes) {

if(shape.materialType == mat::STANDARD)

invokeStandardVariant();

else if(shape.materialType == mat::SKIN)

invokeSkinVariant();

else if(shape.materialType == mat::CLOTH)

invokeClothVariant();

}

Specialized Material Shader

float4 surfaceShader(…) {

…

#if defined(STANDARD)

color = evalStandardMaterial(…);

#elif defined(SKIN)

color = evalSkinMaterial(…);

#elif defined(CLOTH)

color = evalClothMaterial(…);

#endif

…

}

Runtime Parameters

(based on shapes in the scene)

Compile-time Parameters

(based on #define when compiled)

And if we compare the host code to the GPU shader code from a few slides ago,
notice that the GPU code is using compile-time parameters to generate different
variants.

But the host really needs to use runtime versions of those same parameters, since it
doesn’t know what material types are used in the scene until runtime.

11

Key Challenge of Unified Shader Specialization
• Specialization parameters are

• Compile-time parameters for GPU code

• Runtime parameters for host code

• Workarounds in non-unified systems
• #define in GPU code

• Runtime parameter in host code

• Fundamental problem in unified systems
• Same parameter must serve both a compile-time and runtime role

12

And that’s a key challenge with supporting unified shader specialization.

Specialization parameters are compile-time parameters in GPU code, but runtime
parameters in host code.

In a non-unified world, we can work around this as show in the previous example.

But in a unified system, where we want a singular definition for these parameters,
that same parameter now need to serve both a compile-time and a runtime purpose.

12

Related Work
• Unified Shader Programming

• BraidGL [Sampson et al. 2017]
• Uses BraidGL’s static staging feature to express shader code and

specializations

• Selos [Seitz et al. 2019]
• Relies on staged metaprogramming, a key set of language features

available in Lua-Terra [DeVito et al. 2013]

• Neither BraidGL nor Lua-Terra are widely used in real-
time graphics

• Static staging and staged metaprogramming aren’t
available in the widely used languages (e.g., C++)

13

Some prior works have explored unified shader programming, including shader
specialization.

BraidGL utilizes a programming language feature called “static staging” to express
shader code and specializations.

Also, our prior work, Selos, uses a key set of language features called “staged
metaprogramming” that are available in the Lua-Terra language to enable a unified
shader system.

However, neither BraidGL nor Lua-Terra are widely used languages in real-time
graphics.

And more importantly, these key features that they rely on aren’t available in the
widely used language either.

So what we wanted to ask is: Can we bring the benefits of unified programming to
today’s shader programming systems in the near term? Can we meet these existing
systems where they are instead of relying on features they don’t have access to?

13

Goals and Constraints
• Use a language widely used in real-time graphics

• And allow programmers to write code that looks and feels familiar in that
language

• Minimize changes to the language as much as possible

• Equivalent performance compared to current implementations

• Ease of adoption / integration into real-time graphics applications

• First-class support for composition and specialization of (GPU) shader
code

14

So to that end, we have some goals and constraints that guide our efforts.

We of course want to use a language that’s widely used in real-time graphics. But
more than that, we want to allow programmers to write code that really looks and
feels familiar in that language. And so, we need to minimize any changes as much as
possible.

Performance is obviously important in real-time graphics.

In contrast to many prior works, we want to make sure that our approach and
implementation strategies are ones that modern applications could adopt in the near.

And finally, as mentioned earlier, we think these systems need to have first-class
support for shader composition and specialization in order to handle the compile-
time vs. runtime dichotomy of specialization.

14

Key Insight

15

Unified shader programming can be integrated into an
existing, widely used programming language in real-
time graphics by co-opting existing language features
and implementing them with alternate semantics that
are better suited to the domain of real-time graphics
and its corresponding hardware.

Which bring me to the key insight of our work, which is that we can create such a
unified system in an existing, widely used language by co-opting existing features of
the language and implementing them with alternate semantics that are better suited
to the domain of real-time graphics.

Co-opting existing features allows us to repurpose language features that are
unsuitable for GPU code to instead express GPU- and graphics-specific semantics and
optimizations. Also, by reusing existing features, we don’t have to add new language
features and then worry about how those features interact with the rest of the
language.

To demonstrate this, we created a unified shader system integrated into an existing
game engine, specifically Unreal Engine 4.

15

Shader Programming in
Unreal Engine 4

16

Unreal Engine 4 (UE4)
• Popular, widely used game engine

• GPU shader code in HLSL

• Corresponding C++ host class for each shader entry
point

17

[Epic Games, Inc. 2015]

UE4 is a popular, widely used game engine.

In UE4, users can write GPU shader code in HLSL. And for each HLSL entry point,
users must also write a corresponding C++ host class to manage the host-side aspects
of shader set up and invocation.

Let’s look at an example.

17

Example Shader in Unreal Engine 4

18

int MyStruct_TileSizeX;

int MyStruct_TileSizeY;

int MyStruct_NumTilesX;

int MyStruct_NumTilesY;

Texture2D ColorTexture;

SamplerState ColorSampler;

uint GetIterationCount() {

#if QUALITY == LOW

return 2;

#elif QUALITY == MEDIUM

return 4;

#elif QUALITY == HIGH

return 8;

#else

return 16;

}

[numthreads(THREADGROUP_SIZEX, THREADGROUP_SIZEY, 1)]

void MainCS(uint2 DispatchThreadID : SV_DispatchThreadID) {

const uint IterationCount = GetIterationCount();

...

}

HLSL shader code (GPU)

class MyShaderCS : public FGlobalShader {

public:

DECLARE_SHADER_TYPE(MyShaderCS, Global);

BEGIN_SHADER_PARAMETER_STRUCT(FParameters,)

SHADER_PARAMETER_STRUCT(MyStructType, MyStruct)

SHADER_PARAMETER_RDG_TEXTURE(Texture2D, ColorTexture)

SHADER_PARAMETER_SAMPLER(SamplerState, ColorSampler)

END_SHADER_PARAMETER_STRUCT()

class QualityDimension :

SHADER_PERMUTATION_ENUM_CLASS("QUALITY", QualityEnumType);

class ThreadgroupSizeXDimension :

SHADER_PERMUTATION_SPARSE_INT("THREADGROUP_SIZEX", 8, 16);

class ThreadgroupSizeYDimension :

SHADER_PERMUTATION_SPARSE_INT("THREADGROUP_SIZEY", 8, 16);

using FPermutationDomain = TShaderPermutationDomain<

QualityDimension,

ThreadgroupSizeXDimension,

ThreadgroupSizeYDimension>;

};

IMPLEMENT_GLOBAL_SHADER(MyShaderCS, "/path/to/HLSL/file.usf",

"MainCS", SF_Compute);

C++ shader code (host)

On the left, we have GPU shader code, written HLSL.

And on the right, we have the corresponding host shader code, written in C++.

I’m not going to talk about the code in detail, but I’ll just highlight a few key points.

18

Repeated declarations for uniform/varying parameters

19

int MyStruct_TileSizeX;

int MyStruct_TileSizeY;

int MyStruct_NumTilesX;

int MyStruct_NumTilesY;

Texture2D ColorTexture;

SamplerState ColorSampler;

uint GetIterationCount() {

#if QUALITY == LOW

return 2;

#elif QUALITY == MEDIUM

return 4;

#elif QUALITY == HIGH

return 8;

#else

return 16;

}

[numthreads(THREADGROUP_SIZEX, THREADGROUP_SIZEY, 1)]

void MainCS(uint2 DispatchThreadID : SV_DispatchThreadID) {

const uint IterationCount = GetIterationCount();

...

}

HLSL shader code (GPU)

class MyShaderCS : public FGlobalShader {

public:

DECLARE_SHADER_TYPE(MyShaderCS, Global);

BEGIN_SHADER_PARAMETER_STRUCT(FParameters,)

SHADER_PARAMETER_STRUCT(MyStructType, MyStruct)

SHADER_PARAMETER_RDG_TEXTURE(Texture2D, ColorTexture)

SHADER_PARAMETER_SAMPLER(SamplerState, ColorSampler)

END_SHADER_PARAMETER_STRUCT()

class QualityDimension :

SHADER_PERMUTATION_ENUM_CLASS("QUALITY", QualityEnumType);

class ThreadgroupSizeXDimension :

SHADER_PERMUTATION_SPARSE_INT("THREADGROUP_SIZEX", 8, 16);

class ThreadgroupSizeYDimension :

SHADER_PERMUTATION_SPARSE_INT("THREADGROUP_SIZEY", 8, 16);

using FPermutationDomain = TShaderPermutationDomain<

QualityDimension,

ThreadgroupSizeXDimension,

ThreadgroupSizeYDimension>;

};

IMPLEMENT_GLOBAL_SHADER(MyShaderCS, "/path/to/HLSL/file.usf",

"MainCS", SF_Compute);

C++ shader code (host)

Uniform

Parameters

Varying

Parameters

We can see uniform parameters declared in both the GPU and host code. Users are
responsible for keeping these declarations in sync.

I’ll also briefly mention varying parameters. In this compute shader case, only the
GPU code needs to declare them, but other shader types require both host and GPU
declarations for varying parameters.

Looking at a specific uniform parameter for a second…

19

Host and GPU do not share types

20

int MyStruct_TileSizeX;

int MyStruct_TileSizeY;

int MyStruct_NumTilesX;

int MyStruct_NumTilesY;

HLSL shader code (GPU)

struct MyStructType {

int TileSizeX;

int TileSizeY;

int NumTilesX;

int NumTilesY;

};

C++ shader code (host)

Struct in

host code

Redeclared

(and flattened)

in GPU code

I want to point out that host and GPU code don’t share types. We’ve declared a
struct in host code that must be redeclared in GPU code.

SKIP:

(You could use a shared header between host and GPU code, but still programmers
are responsible for handling memory layouts manually, since the GPU compiler will
insert padding for certain types. Ideally, programmers should be able to use the
same types in host and GPU code so that they don’t need to worry about this issue.)

(Also, a quirk of UE4 is that these struct uniform parameters are flattened in GPU
code. This again is something that users have to deal with manually, but even
without this quirk, using different types for host and GPU code still causes issues.)

20

Specialization parameters are implicit in GPU code

21

int MyStruct_TileSizeX;

int MyStruct_TileSizeY;

int MyStruct_NumTilesX;

int MyStruct_NumTilesY;

Texture2D ColorTexture;

SamplerState ColorSampler;

uint GetIterationCount() {

#if QUALITY == LOW

return 2;

#elif QUALITY == MEDIUM

return 4;

#elif QUALITY == HIGH

return 8;

#else

return 16;

}

[numthreads(THREADGROUP_SIZEX, THREADGROUP_SIZEY, 1)]

void MainCS(uint2 DispatchThreadID : SV_DispatchThreadID) {

const uint IterationCount = GetIterationCount();

...

}

HLSL shader code (GPU)

class MyShaderCS : public FGlobalShader {

public:

DECLARE_SHADER_TYPE(MyShaderCS, Global);

BEGIN_SHADER_PARAMETER_STRUCT(FParameters,)

SHADER_PARAMETER_STRUCT(MyStructType, MyStruct)

SHADER_PARAMETER_RDG_TEXTURE(Texture2D, ColorTexture)

SHADER_PARAMETER_SAMPLER(SamplerState, ColorSampler)

END_SHADER_PARAMETER_STRUCT()

class QualityDimension :

SHADER_PERMUTATION_ENUM_CLASS("QUALITY", QualityEnumType);

class ThreadgroupSizeXDimension :

SHADER_PERMUTATION_SPARSE_INT("THREADGROUP_SIZEX", 8, 16);

class ThreadgroupSizeYDimension :

SHADER_PERMUTATION_SPARSE_INT("THREADGROUP_SIZEY", 8, 16);

using FPermutationDomain = TShaderPermutationDomain<

QualityDimension,

ThreadgroupSizeXDimension,

ThreadgroupSizeYDimension>;

};

IMPLEMENT_GLOBAL_SHADER(MyShaderCS, "/path/to/HLSL/file.usf",

"MainCS", SF_Compute);

C++ shader code (host)

Specialization

Parameters

(Usage)

Specialization

Parameters

(Declaration)

Specialization

Parameters

(Usage)

Going back to the example shader, we have these specialization parameters. But they
are only declared in the host code.

However, they are then used in GPU code. I’m going to omit a discussion of how this
all works in UE4, but the point I want to make is that it’s really easy to mess this up.

If I have a typo in the GPU code that uses a specialization parameter, I won’t get any
sort of warning or error, and similarly so if there’s a typo in the string name on the
host side.

Also, forgetting to declare a parameter in host code doesn’t result in any diagnostic
messages either. So future readers might wonder whether it was intentionally
omitted or a bug, which actually happened to me.

21

Specialization: Compile time for GPU; Runtime for host

22

#define LOW 0

#define MEDIUM 1

#define HIGH 2

#define VERYHIGH 3

...

uint GetIterationCount() {

#if QUALITY == LOW

return 2;

#elif QUALITY == MEDIUM

return 4;

#elif QUALITY == HIGH

return 8;

#else

return 16;

}

HLSL shader code (GPU)

enum class QualityEnumType : uint32 {

Low,

Medium,

High,

VeryHigh,

MAX,

};

...

MyShaderCS::PermutationDomain PermutationVector;

PermutationVector.Set<MyShaderCS::Quality>(quality);

PermutationVector.Set<MyShaderCS::ThreadgroupSizeX>(sizeX);

PermutationVector.Set<MyShaderCS::ThreadgroupSizeY>(sizeY);

C++ shader code (host)

← Compile-time constant

set by

Runtime value →

An very critical---but very subtle---property of specialization parameters is that
parameters that must be compile-time constant in GPU code are set by runtime
values in host code. As mentioned before, this is ok in a system where host and GPU
code are separated, and the UE4 toolchain handles compilation and dispatch
appropriately. But this is a real issue in unified systems that we must deal with.

22

The Host-GPU Interface
• Need to express:

• Uniform Parameters

• Varying Parameters

• Specialization Parameters

• Entry Point Functions
• And other GPU-compatible functions

23

We’ve identified the required elements of interface between host code and GPU
code.

The interface needs to express Uniform, Varying, and Specialization Parameters, as
well an entry point function. I’m also going to claim that it’s useful to be able to
denote which other functions are GPU-compatible. This allows host-only functions to
use host-only language features, and vice versa.

Now, let’s look at our unified shader design, both to see how we express these
various element and to see some of the benefits a unified system provides.

23

Unified Shaders in C++

24

Unified Shader Design

25

class [[ShaderClass]] MyShader {

public:

[[uniform]] MyStructType MyStruct;

[[uniform]] Texture2D ColorTexture;

[[uniform]] SamplerState ColorSampler;

[[specialization]]

QualityEnumType Quality;

[[specialization-sparseInt(8,16)]]

int ThreadgroupSizeX;

[[specialization-sparseInt(8,16)]]

int ThreadgroupSizeY;

// Continued on the right

// Continued from the left

[[gpu]]

uint GetIterationCount() const {

if (Quality == QualityEnumType::Low)

return 2;

else if (Quality == QualityEnumType::Medium)

return 4;

else if (Qualiiy == QualityEnumType::High)

return 8;

else

return 16;

}

[[entry-computeShader(ThreadgroupSizeX, ThreadgroupSizeY, 1)]]

void MainCS([[SV_DispatchID]] uint2 DispatchThreadID) const {

const uint IterationCount = GetIterationCount();

...

}

};

C++ shader code (host and GPU)

Here’s the example shader in our unified system. Note that the left and right parts of
the slide are both part of the same C++ class, all contained within one file.

Like UE4, shaders are written as C++ classes. But in contrast, this class contains both
host and GPU code.

The various elements of the host-GPU interface are…

25

Use C++ attributes for elements of the
host-GPU interface

26

class [[ShaderClass]] MyShader {

public:

[[uniform]] MyStructType MyStruct;

[[uniform]] Texture2D ColorTexture;

[[uniform]] SamplerState ColorSampler;

[[specialization]]

QualityEnumType Quality;

[[specialization-sparseInt(8,16)]]

int ThreadgroupSizeX;

[[specialization-sparseInt(8,16)]]

int ThreadgroupSizeY;

// Continued on the right

// Continued from the left

[[gpu]]

uint GetIterationCount() const {

if (Quality == QualityEnumType::Low)

return 2;

else if (Quality == QualityEnumType::Medium)

return 4;

else if (Qualiiy == QualityEnumType::High)

return 8;

else

return 16;

}

[[entry-computeShader(ThreadgroupSizeX, ThreadgroupSizeY, 1)]]

void MainCS([[SV_DispatchID]] uint2 DispatchThreadID) const {

const uint IterationCount = GetIterationCount();

...

}

};

C++ shader code (host and GPU)

(The various elements of the host-GPU interface are…)

expressed using C++ attributes, including uniform and specialization parameters, as
well as marking GPU-compatible code and the GPU code entry point.

Because both the host and GPU code are unified into the same C++ class…

26

Use C++ attributes for elements of the
host-GPU interface

27

class [[ShaderClass]] MyShader {

public:

[[uniform]] MyStructType MyStruct;

[[uniform]] Texture2D ColorTexture;

[[uniform]] SamplerState ColorSampler;

[[specialization]]

QualityEnumType Quality;

[[specialization-sparseInt(8,16)]]

int ThreadgroupSizeX;

[[specialization-sparseInt(8,16)]]

int ThreadgroupSizeY;

// Continued on the right

// Continued from the left

[[gpu]]

uint GetIterationCount() const {

if (Quality == QualityEnumType::Low)

return 2;

else if (Quality == QualityEnumType::Medium)

return 4;

else if (Qualiiy == QualityEnumType::High)

return 8;

else

return 16;

}

[[entry-computeShader(ThreadgroupSizeX, ThreadgroupSizeY, 1)]]

void MainCS([[SV_DispatchID]] uint2 DispatchThreadID) const {

const uint IterationCount = GetIterationCount();

...

}

};

C++ shader code (host and GPU)

Single

declaration of

parameters

(Because both the host and GPU code are unified into the same C++ class…)

The programmer only needs to declare parameters once, rather than needing
separate declarations for host and GPU code.

Related to this…

27

28

class [[ShaderClass]] MyShader {

public:

[[uniform]] MyStructType MyStruct;

[[uniform]] Texture2D ColorTexture;

[[uniform]] SamplerState ColorSampler;

[[specialization]]

QualityEnumType Quality;

[[specialization-sparseInt(8,16)]]

int ThreadgroupSizeX;

[[specialization-sparseInt(8,16)]]

int ThreadgroupSizeY;

// Continued on the right

// Continued from the left

[[gpu]]

uint GetIterationCount() const {

if (Quality == QualityEnumType::Low)

return 2;

else if (Quality == QualityEnumType::Medium)

return 4;

else if (Qualiiy == QualityEnumType::High)

return 8;

else

return 16;

}

[[entry-computeShader(ThreadgroupSizeX, ThreadgroupSizeY, 1)]]

void MainCS([[SV_DispatchID]] uint2 DispatchThreadID) const {

const uint IterationCount = GetIterationCount();

...

}

};

C++ shader code (host and GPU)

Explicit declaration of specialization
parameters (for GPU)

Compile-time error

(instead of a bug)

Specialization parameters are now explicitly declared not only for host code, but also
for GPU code.

This enables the compiler to provide extra validation, such as catching this typo as a
compile-time error, rather than it causing a bug if it were only implicitly declared.

Also thanks to the unified design…

28

Types shared between host and GPU

29

class [[ShaderClass]] MyShader {

public:

[[uniform]] MyStructType MyStruct;

[[uniform]] Texture2D ColorTexture;

[[uniform]] SamplerState ColorSampler;

[[specialization]]

QualityEnumType Quality;

[[specialization-sparseInt(8,16)]]

int ThreadgroupSizeX;

[[specialization-sparseInt(8,16)]]

int ThreadgroupSizeY;

// Continued on the right

// Continued from the left

[[gpu]]

uint GetIterationCount() const {

if (Quality == QualityEnumType::Low)

return 2;

else if (Quality == QualityEnumType::Medium)

return 4;

else if (Qualiiy == QualityEnumType::High)

return 8;

else

return 16;

}

[[entry-computeShader(ThreadgroupSizeX, ThreadgroupSizeY, 1)]]

void MainCS([[SV_DispatchID]] uint2 DispatchThreadID) const {

const uint IterationCount = GetIterationCount();

...

}

};

C++ shader code (host and GPU)

Types are shared between host and GPU code. So the GPU code that uses the Quality
enum parameter can reference the enum type options directly.

29

30

class [[ShaderClass]] MyShader {

public:

[[uniform]] MyStructType MyStruct;

[[uniform]] Texture2D ColorTexture;

[[uniform]] SamplerState ColorSampler;

[[specialization]]

QualityEnumType Quality;

[[specialization-sparseInt(8,16)]]

int ThreadgroupSizeX;

[[specialization-sparseInt(8,16)]]

int ThreadgroupSizeY;

// Elsewhere in the code

MyShader shader;

shader.Quality = quality;

shader.ThreadgroupSizeX = sizeX;

shader.ThreadgroupSizeY = sizeY;

C++ shader code (host and GPU)

Specialization:
Handling Compile-time vs. Rutnime

Options listed

at compile time

Values set

at runtime

And lastly, remember that specialization parameters must be compile-time constant
in GPU code but must then be set by runtime values in host code.

We handle this difference by requiring that specialization parameter declarations
include a list of all possible options for those parameters as compile-time constants.
Then, in host code, the programmer is free to set those parameters using runtime
values.

SKIP:

(As a side note, our system generates asserts to validate that the runtime values
match one of the compile-time options (and, to be fair, UE4 already provides similar
validation for host code.))

30

Design Decisions
• Use C++

• One of (if not the) most-used languages in real-time graphics

• (And because it’s what UE4 uses)

• Express a “shader” as a C++ class
• C++’s mechanism for encapsulating code and data

• Both host and GPU code in the same class

31

Now that we know what a shader looks like in this unified system, let’s dive in to
some of the specific design decisions for our system. We’ve already covered some of
them.

For starters, we use C++ as our programming language of choice. It is one of (if not
the) most-used languages in real-time graphics. And it’s a natural choice for us since
it’s what UE4 uses.

Similarly, UE4 already expresses host shader code using C++ classes, so we do the
same in our system.

However, unlike UE4, our unified shader classes contain both host code and GPU
code.

31

Design Decisions (cont.)
• Co-opt C++ attributes to express elements of the

host-GPU interface
• [[uniform]] float3 myColor;

• Co-opt the C++ inheritance and virtual functions
model to implement composition and specialization

32

The last two design decisions I have are very much related to the “minimize changes”
idea.

The first we’ve already seen: co-opt C++ attributes to express the elements of the
host-GPU interface. This attribute syntax is standard since C++11, but C++ doesn’t
provide support for user-controlled attributes. Also, C++ compilers are free to ignore
attributes they don’t understand. Therefore, attributes should not change the
semantics of a program. However, in our case, ignoring these attributes will result in
an incorrect program, so we’re very much violating the standard semantics of C++
attributes and instead repurposing them for the needs of graphics programming.

But even more so than C++ attributes, where our design really departs from standard
C++ is our use of inheritance and virtual functions to implement shader composition
and specialization.

Why do we need to co-opt anything for compositing and specialization? Well…

32

C++ is insufficient for composition + specialization
• Inheritance and virtual functions

• Dynamic dispatch of functions

• Appropriate for host shader code

• Templates
• Static dispatch of functions

• Appropriate for GPU shader code

33

Dynamic

dispatch is bad

on GPUs

Templates lead

to unwieldy

host code

C++ really doesn’t have what we need for shader specialization. It has two main ways
to compose together different classes.

We could use standard inheritance and virtual functions. This leads to dynamic
dispatch of function implementations through the virtual function table.

In contrast, could use C++ template. All template parameters must be fully specified
at compile time, so this leads to static dispatch of functions.

And what I’ll claim is that dynamic dispatch is better for host shader code, since we
want to invoke GPU rendering work based on runtime parameter values.

But in GPU shader code, specialization is really important to achieve the best
performance. So we really want static dispatch of all functions on the GPU. But this
leads to problems for the host code.

So we have this problem where neither of these options are suitable for unified
shader code, because the host code and the GPU code have these differing
requirements.

33

I hope it’s clear why virtual functions aren’t a good solution, but in case you don’t
believe me about templates, I have an extra slide we can talk about.

33

Solution: Co-opt virtual functions for specialization
• Author shader code using inheritance and virtual functions

• Codegen different GPU specializations based on subtypes

• Host sets parameters using regular C++ syntax

• System invokes different (specialized) GPU code based on
runtime types

34

The solution we came up with is to co-opt virtual functions to implement
specialization.

Programmers author shader code using inheritance and virtual functions, but then
the system will codegen different GPU specializations based on the relevant subtypes.

Host code can then set parameter just as it normally would in C++, but under the
hood, the system will invoke different specialized GPU code based on the runtime
types. So in effect, we get the best of both worlds, all while allowing programmers to
express composition in a very C++ style.

To look at this visually…

34

35

class [[ShaderClass]] StandardMaterial : public Material

{

public:

[[gpu]] virtual float4 eval(...) {

/* GPU code to evaluate the standard material */

}

};

class [[ShaderClass]] ClothMaterial : public Material {

public:

[[gpu]] virtual float4 eval(...) {

/* GPU code to evaluate the cloth material */

}

};

class [[ShaderClass]] MyShader {

public:

Material* material;

[[gpu]] void entryPoint(...) {

float4 color = material->eval(...);

}

};

Write code using virtual functions

The code programmers write looks similar to regular virtual function usage.

35

36

class [[ShaderClass]] StandardMaterial : public Material

{

public:

[[gpu]] virtual float4 eval(...) {

/* GPU code to evaluate the standard material */

}

};

class [[ShaderClass]] ClothMaterial : public Material {

public:

[[gpu]] virtual float4 eval(...) {

/* GPU code to evaluate the cloth material */

}

};

class [[ShaderClass]] MyShader {

public:

Material* material;

[[gpu]] void entryPoint(...) {

float4 color = material->eval(...);

}

};

[[gpu]] float4 evalStandardMaterial(...) {

/* GPU code to evaluate the standard material */

}

[[gpu]] float4 evalClothMaterial(...) {

/* GPU code to evaluate the cloth material */

}

Generate de-virtualized functions for
GPU code

But then the system will generate de-virtualized versions of the virtual functions for
GPU code.

36

37

class [[ShaderClass]] StandardMaterial : public Material

{

public:

[[gpu]] virtual float4 eval(...) {

/* GPU code to evaluate the standard material */

}

};

class [[ShaderClass]] ClothMaterial : public Material {

public:

[[gpu]] virtual float4 eval(...) {

/* GPU code to evaluate the cloth material */

}

};

class [[ShaderClass]] MyShader {

public:

Material* material;

[[gpu]] void entryPoint(...) {

float4 color = material->eval(...);

}

};

[[gpu]] float4 evalStandardMaterial(...) {

/* GPU code to evaluate the standard material */

}

[[gpu]] float4 evalClothMaterial(...) {

/* GPU code to evaluate the cloth material */

}

[[gpu]] void entryPoint_Standard(...) {

evalStandardMaterial(...);

}

[[gpu]] void entryPoint_Cloth(...) {

evalClothMaterial(...);

}

Generate specialized GPU shader variants for
subtypes

And it will also generate specialized GPU shader variants for shaders that use these
virtual functions.

This allows programmers to write regular looking C++ code for their shaders, but then
that code gets transformed into an implementation that is better suited to GPU
hardware.

37

Implementation
• Source-to-source translator using Clang’s LibTooling

• Code live external to Clang

• Use Clang AST to retrieve info from user-written shader source code

• Generate HLSL for GPU code

• Generate C++ for host code
• Use UE4’s existing shader system under-the-hood

• Could support other engines via additional backends

38

I’ll briefly mention the implementation.

We use a source-to-source translator built on top of Clang, but in a way that doesn’t
require modifying the Clang codebase (which helps constrain implementation and
maintenance costs).

The translator walks the Clang AST to retrieve relevant info from user-written shader
source code.

It then generates HLSL for GPU code, including multiple shader variants to turn
dynamic dispatch via virtual functions into static dispatch.

For the host code, it generates C++ and uses UE4’s existing shader system under-the-
hood. This helps to facilitate ease of integration and adoption, by making these
unified shaders compatible with existing UE4 code.

We could add support for other shading language and engines by writing additional
backends.

38

39

Evaluation – Infiltrator Demo

Screenshots used with permission of Epic Games Unreal Engine Marketplace

[Epic Games, Inc. 2015]

To evaluate our system, we rewrote some of UE4’s shaders to use the unified system,
and we ran the Infiltrator Demo using both the original shaders and our unified
shaders.

39

Evaluation – GPU Performance

40

Shader Motion Blur Filter
(time in ms)

Min Avg Max

Temporal AA
(time in ms)

Min Avg Max

Original UE4 Code 0.06 0.18 0.70 0.23 0.28 0.74

Unified Code 0.06 0.18 0.70 0.24 0.28 0.75

Similar Performance

As shown, the performance of our unified shaders is similar to the original UE4
versions.

We also wanted to make sure our abstraction didn’t lead to excessive code bloat.

40

Evaluation – Lines of Code

41

Shader Motion Blur Filter Temporal AA

Original UE4 Code 902 2,138

Unified Code 920 2,251

Similar Code Sizes

And similarly, the Lines of Code counts are comparable as well. Some of the
additional lines are due to stylistic differences, some due to some minor code
duplication from HLSL header files, and yes, some are due to our abstractions, but we
think the trade-offs of more robust code is worth it.

41

Limitations

• Only support compute shaders
• An increasingly large portion of a modern game’s shader code

• Pixel shaders can be supported similarly

• Only support equivalent of UE4’s Global Shaders
• Do not interface with the material or mesh systems

• Future work to explore Material and MeshMaterial shaders

42

As for limitations, our current implementation only supports compute shaders. These
are an increasingly large portion of a modern game’s shader code, and they are
sufficient to demonstrate the challenges in unified shader programming.

Similarly, our translator only supports UE4’s “Global Shaders,” which don’t interface
with the material or mesh systems.

42

Wrapping up

43

Summary
• Support unified shader specialization in C++ by co-opting its

existing features and implementing them with alternate
semantics
• Co-opt C++ attributes for the host-GPU interface
• Co-opt inheritance and virtual functions for shader specialization

• Maintain compatibility as C++ evolves, since we aren’t
adding new features

• Similar performance and code size to original UE4 shaders

44

We added unified shader programming to C++ by co-opting its existing features and
implementing them with alternate semantics.

We co-opt C++’s attributes to express elements of the host-GPU interface, and we co-
opt inheritance and virtual functions for shader specialization.

Since we aren’t adding new features to C++, just re-using existing ones, our system
can maintain compatibility with future versions of C++.

Our unified shaders achieve similar performance and code sizes compared to the
original UE4 shaders

44

Future Work
• Co-opting features of another language for graphics

• E.g., Rust’s generics

• Optimizations across the host-GPU boundary
• Unified view of the code → more opportunities to optimize

• E.g., Memory allocations & transfers, synchronization between host/GPU & render
passes

• Programming models beyond separate shaders per rendering pass

45

As future work, we think it’d be interesting to try co-opting features of another
language for graphics programming.

Also, what kinds of optimizations can we perform by giving the compiler a unified
view of the code.

And what will make those optimizations even more powerful is developing
programming models beyond just separate shaders per rendering pass.

45

Future Work (cont.)
• Programming models beyond separate shaders per rendering pass

• Write rendering code as one integrated unit → (JIT) compiler splits it up
into different shader kernels

• Some benefits from compile-time analysis

• Greater benefits from runtime optimizations too?
• Utilizing render graphs to generate optimized kernels per frame

46

Unified shader programming and specialization support
is a prerequisite for these types of future systems!

For example, maybe we could write rendering code as one integrated unit and let the
compiler split it up into different shader kernels.

I think there could be some benefit from compile-time analysis, but there’s a greater
potential for incorporating runtime optimizations too, perhaps leveraging information
available in a render graph system.

And I want to note that unified shader programming and specialization support is a
prerequisite for these types of future systems!

And with that…

46

Acknowledgments
• Guidance, feedback, and technical advice

• Anjul Patney, Chuck Rozhon, Yong He, Brian Karis, Ola Olsson,
Andrew Lauritzen, Yuriy O’Donnell, Angelo Pesce, Charlie Birtwistle,
Michael Vance, Dave Shreiner, and the anonymous reviewers

• Hardware donations and financial support
• Intel Corporation

• NVIDIA Corporation

47

I’d like to thank the many people who helped us with this work.

And also thank you to Intel Corporation and NVIDIA Corporation for financial support.

47

Thank you!
Kerry A. Seitz, Jr., Theresa Foley, Serban D. Porumbescu, and John D. Owens

kaseitz@ucdavis.edu

Source Code:

https://github.com/owensgroup/UnifiedShaderSpecialization

And thank you! The source code of our translator is available on GitHub.

And I’d be happy to answer any questions.

48

References
• Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. 2013.

Terra: A Multi-Stage Language for High-Performance Computing. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’13). 105–116. https://doi.org/10.1145/2491956.2462166

• Epic Games, Inc. 2015. Infiltrator Demo.
https://www.unrealengine.com/marketplace/en-US/product/infiltrator-demo

• Epic Games, Inc. 2019. Unreal Engine 4 Documentation.
https://docs.unrealengine.com/en-us/

• Adrian Sampson, Kathryn S. McKinley, and Todd Mytkowicz. 2017. Static Stages
for Heterogeneous Programming. Proceedings of the ACM on Programming
Languages 1, OOPSLA, Article 71 (Oct. 2017), 27 pages.
https://doi.org/10.1145/3133895

• Kerry A. Seitz, Jr., T. Foley, Serban D. Porumbescu, and John D. Owens. 2019.
Staged Metaprogramming for Shader System Development. ACM Transactions
on Graphics 38, 6 (Nov. 2019), 202:1–202:15.
https://doi.org/10.1145/3355089.3356554

49

49

Extra Slides

50

References for Extra Slides
• NVIDIA Corporation. 2022. cuda-samples:

reduction_kernel.cu. https://github.com/NVIDIA/cuda-
samples/blob/b312abaa07ffdc1ba6e3d44a9bc1a8e891
49c20b/Samples/2_Concepts_and_Techniques/reductio
n/reduction_kernel.cu#L633-L1025

• Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov,
and Pat Hanrahan. 2001. A Real-Time Procedural
Shading System for Programmable Graphics Hardware.
In Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques
(SIGGRAPH 2001). 159–170.
https://doi.org/10.1145/383259.383275

51

51

Overcoming the Limitations
• Global Shader Pixel Shaders

• Trivial extension of the Compute Shader case

• Mesh and MeshMaterial Shaders
• Challenge: Coordinating varying parameters between shader types

• E.g., Vertex Shader outputs → Pixel Shader inputs

• Possible Solution: Pipeline Shader design [Proudfoot et al. 2001]

• Challenge: Different amounts and type of data that need to be stored / accessed
• E.g., Eye Material might have more data than Standard Material

• Possible Solution: Compiler could specialize datatypes if only one material is used

Compiler could union the types if multiple are used

(e.g., auto-generated Gbuffer)
52

52

Why Templates are Insufficient

53

...

template <typename T, unsigned int blockSize, bool nIsPow2>

__global__ void reduce6(T *g_idata, T *g_odata, unsigned int n) { ... }

template <typename T, unsigned int blockSize, bool nIsPow2>

__global__ void reduce7(T *g_idata, T *g_odata, unsigned int n) { ... }

...

reduction_kernel.cu (CUDA Sample)

// Boilerplate

template <typename T>

class [[ShaderClass]] ReduceBase {

[[specialization_SparseInt(1024, 512, ...)]] int numThreads;

[[specialization_Bool]] bool nIsPow2;

[[gpu]] virtual void reduceKernel(...) = 0;

};

// Boilerplate

template <typename T>

class [[ShaderClass]] ReduceRunner {

[[specialization_ShaderClass]] ReduceBase* reducer;

[[entry_ComputeShader(reducer->numThreads, 1, 1)]]

void runReducer(...) { reducer->reduceKernel(); }

};

// Our version of reduce6 and reduce7

template <typename T>

class [[ShaderClass]] ShaderReduce6 : public ReduceBase {

[[gpu]] virtual void reduceKernel(...) override { ... }

};

template <typename T>

class [[ShaderClass]] ShaderReduce7 : public ReduceBase {

[[gpu]] virtual void reduceKernel(...) override { ... }

};

Our version

[NVIDIA Corporation 2022]

On the left is an example from the NVIDIA CUDA samples. There are multiple
reduction kernel implementations that are optimized for different situations. These
kernels use template parameters to generate specialized implementations for better
performance. The code on the left shows the GPU kernel declarations from the
CUDA sample.

On the right is a version written using our abstractions. Ours has a little bit of extra
boilerplate to declare the base ShaderClass, and also to declare the Runner
ShaderClass (the latter is necessary with our current translator implementation, but
we could eliminate the need for it with minor modifications in the future).

Then, we can declare the reduction implementation similarly, with just a little extra
boilerplate. So at first, yes ours looks longer. But…

53

Why Templates are Insufficient

54

// Running one of the reduce kernels

void reduce(...) {

...

...

reduction_kernel.cu (CUDA Sample)

// Running one of the reduce shaders

template <typename T>

void reduce(...) {

...

ReduceBase* reduceShader;

switch (whichKernel) {

case 0: reduceShader = new ReduceShader0<T>(); break;

case 1: reduceShader = new ReduceShader1<T>(); break;

case 2: reduceShader = new ReduceShader2<T>(); break;

case 3: reduceShader = new ReduceShader3<T>(); break;

case 4: reduceShader = new ReduceShader4<T>(); break;

case 5: reduceShader = new ReduceShader5<T>(); break;

case 6: reduceShader = new ReduceShader6<T>(); break;

case 7: reduceShader = new ReduceShader7<T>(); break;

case 8: reduceShader = new ReduceShader8<T>(); break;

case 9: reduceShader = new ReduceShader9<T>(); break;

}

reduceShader->numThreads = threads;

reduceShader->nIsPow2 = isPowTwo(size);

reduceRunner runner;

runner.reducer = reduceShader;

runner.addComputePass(...);

}

Our version

[NVIDIA Corporation 2022]

Where we get huge wins is when we look at the code that sets up and invokes these
reduce kernels. On the right is our version, where we simply choose which class to
use, set the numThreads and nIsPow2 parameters, and run the Runner ShaderClass.
And we’re done.

The CUDA version look similar at first, where it’s selecting between different kernel
implementations.

54

Why Templates are Insufficient

55

reduction_kernel.cu (CUDA Sample)

// Nothing :)

Our version

[NVIDIA Corporation 2022]

But then, we see the real problem. There’s a bunch of extra code to map the runtime
threads variable to template parameter, since these template parameters must be all
specified at compile time. So there are cases for 512 to 32…

55

Why Templates are Insufficient

56

reduction_kernel.cu (CUDA Sample)

// Nothing :)

Our version

[NVIDIA Corporation 2022]

And then for 16 to 1.

56

Why Templates are Insufficient

57

reduction_kernel.cu (CUDA Sample)

// Nothing :)

Our version

[NVIDIA Corporation 2022]

And then we move on to the next kernel implementation, where we have to have a
switch over the runtime variable again.

57

Why Templates are Insufficient

58

reduction_kernel.cu (CUDA Sample)

// Nothing :)

Our version

[NVIDIA Corporation 2022]

And again.

58

Why Templates are Insufficient

59

reduction_kernel.cu (CUDA Sample)

// Nothing :)

Our version

[NVIDIA Corporation 2022]

And again, except now there is a nested switch, because we also need to handle the
nIsPow2 parameter in the same way.

59

Why Templates are Insufficient

60

reduction_kernel.cu (CUDA Sample)

// Nothing :)

Our version

[NVIDIA Corporation 2022]

And so on.

60

Why Templates are Insufficient

61

reduction_kernel.cu (CUDA Sample)

// Nothing :)

Our version

[NVIDIA Corporation 2022]

And so on.

61

Why Templates are Insufficient

62

reduction_kernel.cu (CUDA Sample)

// Nothing :)

Our version

[NVIDIA Corporation 2022]

And so on.

62

Why Templates are Insufficient

63

reduction_kernel.cu (CUDA Sample)

// Nothing :)

Our version

[NVIDIA Corporation 2022]

And so on.

63

Why Templates are Insufficient

64

// etc. etc. etc.

reduction_kernel.cu (CUDA Sample)

// Nothing :)

Our version

[NVIDIA Corporation 2022]

And… I think you see the point.

64

Why Templates are Insufficient

65

// Running one of the reduce kernels

void reduce(...) {

...

reduction_kernel.cu (CUDA Sample)

// Running one of the reduce shaders

template <typename T>

void reduce(...) {

...

ReduceBase* reduceShader;

switch (whichKernel) {

case 0: reduceShader = new ReduceShader0<T>(); break;

case 1: reduceShader = new ReduceShader1<T>(); break;

case 2: reduceShader = new ReduceShader2<T>(); break;

case 3: reduceShader = new ReduceShader3<T>(); break;

case 4: reduceShader = new ReduceShader4<T>(); break;

case 5: reduceShader = new ReduceShader5<T>(); break;

case 6: reduceShader = new ReduceShader6<T>(); break;

case 7: reduceShader = new ReduceShader7<T>(); break;

case 8: reduceShader = new ReduceShader8<T>(); break;

case 9: reduceShader = new ReduceShader9<T>(); break;

}

reduceShader->numThreads = threads;

reduceShader->nIsPow2 = isPowTwo(size);

reduceRunner runner;

runner.reducer = reduceShader;

runner.addComputePass(...);

}

Our version

~400 Lines

of Code

~30 Lines

of Code

[NVIDIA Corporation 2022]

The original CUDA sample version uses about 400 lines of code to set up and invoke
the reduce kernels.

In contrast, our version does the same in about 30 lines of code.

So I hope this helps to demonstrate why C++ templates are not a good solution for
implementing shader specialization. Templates result in a bunch of extra boilerplate
code needed to map runtime parameters to their compile-time counterparts.
Imagine having to add another case to all of these switch statements!

In our system, we support shader specialization as a first-class operation, and we
designed our system to elegantly handle the compile-time vs. runtime dichotomy of
specialization parameters, resulting in a much more maintainable implementation.
So adding another case is much simpler!

65

